Optimal. Leaf size=31 \[ \log \left (\log \left (\frac {e^{e^3+x} \left (-e^{\frac {4+x-x^2}{x}}+x\right )}{x}\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 3.38, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{\frac {4+x-x^2}{x}} (-4-x)-x^3}{\left (e^{\frac {4+x-x^2}{x}} x^2-x^3\right ) \log \left (\frac {e^{e^3+x} \left (-e^{\frac {4+x-x^2}{x}}+x\right )}{x}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {1}{\log \left (e^{e^3} \left (e^x-\frac {e^{1+\frac {4}{x}}}{x}\right )\right )}-\frac {e^{1+\frac {4}{x}} \left (4+x+x^2\right )}{x^2 \left (e^{1+\frac {4}{x}}-e^x x\right ) \log \left (e^{e^3} \left (e^x-\frac {e^{1+\frac {4}{x}}}{x}\right )\right )}\right ) \, dx\\ &=\int \frac {1}{\log \left (e^{e^3} \left (e^x-\frac {e^{1+\frac {4}{x}}}{x}\right )\right )} \, dx-\int \frac {e^{1+\frac {4}{x}} \left (4+x+x^2\right )}{x^2 \left (e^{1+\frac {4}{x}}-e^x x\right ) \log \left (e^{e^3} \left (e^x-\frac {e^{1+\frac {4}{x}}}{x}\right )\right )} \, dx\\ &=-\int \left (\frac {e^{1+\frac {4}{x}}}{\left (e^{1+\frac {4}{x}}-e^x x\right ) \log \left (e^{e^3} \left (e^x-\frac {e^{1+\frac {4}{x}}}{x}\right )\right )}-\frac {4 e^{1+\frac {4}{x}}}{x^2 \left (-e^{1+\frac {4}{x}}+e^x x\right ) \log \left (e^{e^3} \left (e^x-\frac {e^{1+\frac {4}{x}}}{x}\right )\right )}-\frac {e^{1+\frac {4}{x}}}{x \left (-e^{1+\frac {4}{x}}+e^x x\right ) \log \left (e^{e^3} \left (e^x-\frac {e^{1+\frac {4}{x}}}{x}\right )\right )}\right ) \, dx+\int \frac {1}{\log \left (e^{e^3} \left (e^x-\frac {e^{1+\frac {4}{x}}}{x}\right )\right )} \, dx\\ &=4 \int \frac {e^{1+\frac {4}{x}}}{x^2 \left (-e^{1+\frac {4}{x}}+e^x x\right ) \log \left (e^{e^3} \left (e^x-\frac {e^{1+\frac {4}{x}}}{x}\right )\right )} \, dx+\int \frac {1}{\log \left (e^{e^3} \left (e^x-\frac {e^{1+\frac {4}{x}}}{x}\right )\right )} \, dx-\int \frac {e^{1+\frac {4}{x}}}{\left (e^{1+\frac {4}{x}}-e^x x\right ) \log \left (e^{e^3} \left (e^x-\frac {e^{1+\frac {4}{x}}}{x}\right )\right )} \, dx+\int \frac {e^{1+\frac {4}{x}}}{x \left (-e^{1+\frac {4}{x}}+e^x x\right ) \log \left (e^{e^3} \left (e^x-\frac {e^{1+\frac {4}{x}}}{x}\right )\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.70, size = 26, normalized size = 0.84 \begin {gather*} \log \left (\log \left (e^{e^3} \left (e^x-\frac {e^{1+\frac {4}{x}}}{x}\right )\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.80, size = 29, normalized size = 0.94 \begin {gather*} \log \left (\log \left (\frac {{\left (x - e^{\left (-\frac {x^{2} - x - 4}{x}\right )}\right )} e^{\left (x + e^{3}\right )}}{x}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.25, size = 28, normalized size = 0.90 \begin {gather*} \log \left (\log \left (\frac {x e^{\left (x + e^{3}\right )} - e^{\left (\frac {x e^{3} + x + 4}{x}\right )}}{x}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.16, size = 396, normalized size = 12.77
method | result | size |
risch | \(\ln \left (\ln \left ({\mathrm e}^{x}\right )-\frac {i \left (\pi \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (i {\mathrm e}^{x} \left (-{\mathrm e}^{-\frac {x^{2}-x -4}{x}}+x \right )\right ) \mathrm {csgn}\left (\frac {i \left (-{\mathrm e}^{-\frac {x^{2}-x -4}{x}}+x \right ) {\mathrm e}^{x}}{x}\right )-\pi \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i \left (-{\mathrm e}^{-\frac {x^{2}-x -4}{x}}+x \right ) {\mathrm e}^{x}}{x}\right )^{2}+\pi \,\mathrm {csgn}\left (i {\mathrm e}^{x}\right ) \mathrm {csgn}\left (i \left (-{\mathrm e}^{-\frac {x^{2}-x -4}{x}}+x \right )\right ) \mathrm {csgn}\left (i {\mathrm e}^{x} \left (-{\mathrm e}^{-\frac {x^{2}-x -4}{x}}+x \right )\right )-\pi \,\mathrm {csgn}\left (i {\mathrm e}^{x}\right ) \mathrm {csgn}\left (i {\mathrm e}^{x} \left (-{\mathrm e}^{-\frac {x^{2}-x -4}{x}}+x \right )\right )^{2}-\pi \,\mathrm {csgn}\left (i \left (-{\mathrm e}^{-\frac {x^{2}-x -4}{x}}+x \right )\right ) \mathrm {csgn}\left (i {\mathrm e}^{x} \left (-{\mathrm e}^{-\frac {x^{2}-x -4}{x}}+x \right )\right )^{2}+\pi \mathrm {csgn}\left (i {\mathrm e}^{x} \left (-{\mathrm e}^{-\frac {x^{2}-x -4}{x}}+x \right )\right )^{3}-\pi \,\mathrm {csgn}\left (i {\mathrm e}^{x} \left (-{\mathrm e}^{-\frac {x^{2}-x -4}{x}}+x \right )\right ) \mathrm {csgn}\left (\frac {i \left (-{\mathrm e}^{-\frac {x^{2}-x -4}{x}}+x \right ) {\mathrm e}^{x}}{x}\right )^{2}+\pi \mathrm {csgn}\left (\frac {i \left (-{\mathrm e}^{-\frac {x^{2}-x -4}{x}}+x \right ) {\mathrm e}^{x}}{x}\right )^{3}+2 i {\mathrm e}^{3}-2 i \ln \relax (x )+2 i \ln \left (-{\mathrm e}^{-\frac {x^{2}-x -4}{x}}+x \right )\right )}{2}\right )\) | \(396\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.42, size = 24, normalized size = 0.77 \begin {gather*} \log \left (e^{3} + \log \left (x e^{x} - e^{\left (\frac {4}{x} + 1\right )}\right ) - \log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.90, size = 25, normalized size = 0.81 \begin {gather*} \ln \left (\ln \left ({\mathrm {e}}^{{\mathrm {e}}^3}\,{\mathrm {e}}^x-\frac {\mathrm {e}\,{\mathrm {e}}^{4/x}\,{\mathrm {e}}^{{\mathrm {e}}^3}}{x}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.62, size = 24, normalized size = 0.77 \begin {gather*} \log {\left (\log {\left (\frac {\left (x - e^{\frac {- x^{2} + x + 4}{x}}\right ) e^{x} e^{e^{3}}}{x} \right )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________