Optimal. Leaf size=25 \[ 3+\frac {16 x \left (-2-x+\log \left (e^2-x\right )\right )}{e^x+x} \]
________________________________________________________________________________________
Rubi [F] time = 4.49, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-16 x^2-16 e^2 x^2+16 x^3+e^x \left (16 x-16 x^3+e^2 \left (-32+16 x^2\right )\right )+e^x \left (e^2 (16-16 x)-16 x+16 x^2\right ) \log \left (e^2-x\right )}{e^{2 x} \left (e^2-x\right )+e^2 x^2-x^3+e^x \left (2 e^2 x-2 x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\left (-16-16 e^2\right ) x^2+16 x^3+e^x \left (16 x-16 x^3+e^2 \left (-32+16 x^2\right )\right )+e^x \left (e^2 (16-16 x)-16 x+16 x^2\right ) \log \left (e^2-x\right )}{e^{2 x} \left (e^2-x\right )+e^2 x^2-x^3+e^x \left (2 e^2 x-2 x^2\right )} \, dx\\ &=\int \frac {16 \left (-e^2 x^2+(-1+x) x^2+e^{2+x} \left (-2+x^2\right )+e^x \left (x-x^3\right )-e^x \left (e^2-x\right ) (-1+x) \log \left (e^2-x\right )\right )}{\left (e^2-x\right ) \left (e^x+x\right )^2} \, dx\\ &=16 \int \frac {-e^2 x^2+(-1+x) x^2+e^{2+x} \left (-2+x^2\right )+e^x \left (x-x^3\right )-e^x \left (e^2-x\right ) (-1+x) \log \left (e^2-x\right )}{\left (e^2-x\right ) \left (e^x+x\right )^2} \, dx\\ &=16 \int \left (-\frac {(-1+x) x \left (2+x-\log \left (e^2-x\right )\right )}{\left (e^x+x\right )^2}+\frac {-2 e^2+x+e^2 x^2-x^3+e^2 \log \left (e^2-x\right )-\left (1+e^2\right ) x \log \left (e^2-x\right )+x^2 \log \left (e^2-x\right )}{\left (e^2-x\right ) \left (e^x+x\right )}\right ) \, dx\\ &=-\left (16 \int \frac {(-1+x) x \left (2+x-\log \left (e^2-x\right )\right )}{\left (e^x+x\right )^2} \, dx\right )+16 \int \frac {-2 e^2+x+e^2 x^2-x^3+e^2 \log \left (e^2-x\right )-\left (1+e^2\right ) x \log \left (e^2-x\right )+x^2 \log \left (e^2-x\right )}{\left (e^2-x\right ) \left (e^x+x\right )} \, dx\\ &=-\left (16 \int \left (-\frac {x \left (2+x-\log \left (e^2-x\right )\right )}{\left (e^x+x\right )^2}+\frac {x^2 \left (2+x-\log \left (e^2-x\right )\right )}{\left (e^x+x\right )^2}\right ) \, dx\right )+16 \int \frac {x-x^3+e^2 \left (-2+x^2\right )-\left (e^2-x\right ) (-1+x) \log \left (e^2-x\right )}{\left (e^2-x\right ) \left (e^x+x\right )} \, dx\\ &=16 \int \frac {x \left (2+x-\log \left (e^2-x\right )\right )}{\left (e^x+x\right )^2} \, dx-16 \int \frac {x^2 \left (2+x-\log \left (e^2-x\right )\right )}{\left (e^x+x\right )^2} \, dx+16 \int \left (-\frac {2 e^2}{\left (e^2-x\right ) \left (e^x+x\right )}+\frac {x}{\left (e^2-x\right ) \left (e^x+x\right )}+\frac {e^2 x^2}{\left (e^2-x\right ) \left (e^x+x\right )}-\frac {x^3}{\left (e^2-x\right ) \left (e^x+x\right )}+\frac {e^2 \log \left (e^2-x\right )}{\left (e^2-x\right ) \left (e^x+x\right )}-\frac {\left (1+e^2\right ) x \log \left (e^2-x\right )}{\left (e^2-x\right ) \left (e^x+x\right )}+\frac {x^2 \log \left (e^2-x\right )}{\left (e^2-x\right ) \left (e^x+x\right )}\right ) \, dx\\ &=16 \int \frac {x}{\left (e^2-x\right ) \left (e^x+x\right )} \, dx-16 \int \frac {x^3}{\left (e^2-x\right ) \left (e^x+x\right )} \, dx+16 \int \frac {x^2 \log \left (e^2-x\right )}{\left (e^2-x\right ) \left (e^x+x\right )} \, dx+16 \int \left (\frac {2 x}{\left (e^x+x\right )^2}+\frac {x^2}{\left (e^x+x\right )^2}-\frac {x \log \left (e^2-x\right )}{\left (e^x+x\right )^2}\right ) \, dx-16 \int \left (\frac {2 x^2}{\left (e^x+x\right )^2}+\frac {x^3}{\left (e^x+x\right )^2}-\frac {x^2 \log \left (e^2-x\right )}{\left (e^x+x\right )^2}\right ) \, dx+\left (16 e^2\right ) \int \frac {x^2}{\left (e^2-x\right ) \left (e^x+x\right )} \, dx+\left (16 e^2\right ) \int \frac {\log \left (e^2-x\right )}{\left (e^2-x\right ) \left (e^x+x\right )} \, dx-\left (32 e^2\right ) \int \frac {1}{\left (e^2-x\right ) \left (e^x+x\right )} \, dx-\left (16 \left (1+e^2\right )\right ) \int \frac {x \log \left (e^2-x\right )}{\left (e^2-x\right ) \left (e^x+x\right )} \, dx\\ &=16 \int \frac {x^2}{\left (e^x+x\right )^2} \, dx-16 \int \frac {x^3}{\left (e^x+x\right )^2} \, dx+16 \int \left (-\frac {1}{e^x+x}+\frac {e^2}{\left (e^2-x\right ) \left (e^x+x\right )}\right ) \, dx-16 \int \left (-\frac {e^4}{e^x+x}+\frac {e^6}{\left (e^2-x\right ) \left (e^x+x\right )}-\frac {e^2 x}{e^x+x}-\frac {x^2}{e^x+x}\right ) \, dx-16 \int \frac {x \log \left (e^2-x\right )}{\left (e^x+x\right )^2} \, dx+16 \int \frac {x^2 \log \left (e^2-x\right )}{\left (e^x+x\right )^2} \, dx+16 \int \frac {-e^2 \int \frac {1}{e^x+x} \, dx+e^4 \int \frac {1}{\left (e^2-x\right ) \left (e^x+x\right )} \, dx-\int \frac {x}{e^x+x} \, dx}{e^2-x} \, dx+32 \int \frac {x}{\left (e^x+x\right )^2} \, dx-32 \int \frac {x^2}{\left (e^x+x\right )^2} \, dx+\left (16 e^2\right ) \int \left (-\frac {e^2}{e^x+x}+\frac {e^4}{\left (e^2-x\right ) \left (e^x+x\right )}-\frac {x}{e^x+x}\right ) \, dx+\left (16 e^2\right ) \int \frac {\int \frac {1}{\left (e^2-x\right ) \left (e^x+x\right )} \, dx}{e^2-x} \, dx-\left (32 e^2\right ) \int \frac {1}{\left (e^2-x\right ) \left (e^x+x\right )} \, dx-\left (16 \left (1+e^2\right )\right ) \int \frac {-\int \frac {1}{e^x+x} \, dx+e^2 \int \frac {1}{\left (e^2-x\right ) \left (e^x+x\right )} \, dx}{e^2-x} \, dx-\left (16 \log \left (e^2-x\right )\right ) \int \frac {x}{e^x+x} \, dx-\left (16 e^2 \log \left (e^2-x\right )\right ) \int \frac {1}{e^x+x} \, dx+\left (16 e^2 \log \left (e^2-x\right )\right ) \int \frac {1}{\left (e^2-x\right ) \left (e^x+x\right )} \, dx+\left (16 e^4 \log \left (e^2-x\right )\right ) \int \frac {1}{\left (e^2-x\right ) \left (e^x+x\right )} \, dx+\left (16 \left (1+e^2\right ) \log \left (e^2-x\right )\right ) \int \frac {1}{e^x+x} \, dx-\left (16 e^2 \left (1+e^2\right ) \log \left (e^2-x\right )\right ) \int \frac {1}{\left (e^2-x\right ) \left (e^x+x\right )} \, dx\\ &=\frac {32}{e^x+x}-\frac {16 \log \left (e^2-x\right )}{e^x+x}+16 \int \frac {x^2}{\left (e^x+x\right )^2} \, dx-16 \int \frac {x^3}{\left (e^x+x\right )^2} \, dx-16 \int \frac {1}{e^x+x} \, dx+16 \int \frac {x^2}{e^x+x} \, dx+16 \int \frac {\int \frac {x^2}{\left (e^x+x\right )^2} \, dx}{e^2-x} \, dx-16 \int \frac {\frac {1}{e^x+x}+\int \frac {1}{\left (e^x+x\right )^2} \, dx+\int \frac {1}{e^x+x} \, dx}{e^2-x} \, dx+16 \int \left (\frac {e^2 \left (-\int \frac {1}{e^x+x} \, dx+e^2 \int \frac {1}{\left (e^2-x\right ) \left (e^x+x\right )} \, dx\right )}{e^2-x}-\frac {\int \frac {x}{e^x+x} \, dx}{e^2-x}\right ) \, dx+32 \int \frac {1}{\left (e^x+x\right )^2} \, dx-32 \int \frac {x^2}{\left (e^x+x\right )^2} \, dx+32 \int \frac {1}{e^x+x} \, dx+\left (16 e^2\right ) \int \frac {1}{\left (e^2-x\right ) \left (e^x+x\right )} \, dx+\left (16 e^2\right ) \int \frac {\int \frac {1}{\left (e^2-x\right ) \left (e^x+x\right )} \, dx}{e^2-x} \, dx-\left (32 e^2\right ) \int \frac {1}{\left (e^2-x\right ) \left (e^x+x\right )} \, dx-\left (16 \left (1+e^2\right )\right ) \int \left (-\frac {\int \frac {1}{e^x+x} \, dx}{e^2-x}+\frac {e^2 \int \frac {1}{\left (e^2-x\right ) \left (e^x+x\right )} \, dx}{e^2-x}\right ) \, dx-\left (16 \log \left (e^2-x\right )\right ) \int \frac {1}{\left (e^x+x\right )^2} \, dx+\left (16 \log \left (e^2-x\right )\right ) \int \frac {x^2}{\left (e^x+x\right )^2} \, dx-\left (16 \log \left (e^2-x\right )\right ) \int \frac {1}{e^x+x} \, dx-\left (16 \log \left (e^2-x\right )\right ) \int \frac {x}{e^x+x} \, dx-\left (16 e^2 \log \left (e^2-x\right )\right ) \int \frac {1}{e^x+x} \, dx+\left (16 e^2 \log \left (e^2-x\right )\right ) \int \frac {1}{\left (e^2-x\right ) \left (e^x+x\right )} \, dx+\left (16 e^4 \log \left (e^2-x\right )\right ) \int \frac {1}{\left (e^2-x\right ) \left (e^x+x\right )} \, dx+\left (16 \left (1+e^2\right ) \log \left (e^2-x\right )\right ) \int \frac {1}{e^x+x} \, dx-\left (16 e^2 \left (1+e^2\right ) \log \left (e^2-x\right )\right ) \int \frac {1}{\left (e^2-x\right ) \left (e^x+x\right )} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.73, size = 23, normalized size = 0.92 \begin {gather*} -\frac {16 x \left (2+x-\log \left (e^2-x\right )\right )}{e^x+x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.80, size = 25, normalized size = 1.00 \begin {gather*} -\frac {16 \, {\left (x^{2} - x \log \left (-x + e^{2}\right ) + 2 \, x\right )}}{x + e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 1.65, size = 25, normalized size = 1.00 \begin {gather*} -\frac {16 \, {\left (x^{2} - x \log \left (-x + e^{2}\right ) + 2 \, x\right )}}{x + e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 30, normalized size = 1.20
method | result | size |
risch | \(\frac {16 x \ln \left ({\mathrm e}^{2}-x \right )}{{\mathrm e}^{x}+x}-\frac {16 x \left (2+x \right )}{{\mathrm e}^{x}+x}\) | \(30\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.41, size = 25, normalized size = 1.00 \begin {gather*} -\frac {16 \, {\left (x^{2} - x \log \left (-x + e^{2}\right ) + 2 \, x\right )}}{x + e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.62, size = 21, normalized size = 0.84 \begin {gather*} -\frac {16\,x\,\left (x-\ln \left ({\mathrm {e}}^2-x\right )+2\right )}{x+{\mathrm {e}}^x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.33, size = 22, normalized size = 0.88 \begin {gather*} \frac {- 16 x^{2} + 16 x \log {\left (- x + e^{2} \right )} - 32 x}{x + e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________