Optimal. Leaf size=14 \[ 3+2 x+x^2+\log \left (e+x^2\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.02, antiderivative size = 13, normalized size of antiderivative = 0.93, number of steps used = 3, number of rules used = 2, integrand size = 29, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.069, Rules used = {1810, 260} \begin {gather*} x^2+\log \left (x^2+e\right )+2 x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 260
Rule 1810
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (2+2 x+\frac {2 x}{e+x^2}\right ) \, dx\\ &=2 x+x^2+2 \int \frac {x}{e+x^2} \, dx\\ &=2 x+x^2+\log \left (e+x^2\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 21, normalized size = 1.50 \begin {gather*} 2 \left (x+\frac {x^2}{2}+\frac {1}{2} \log \left (e+x^2\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.63, size = 14, normalized size = 1.00 \begin {gather*} x^{2} + 2 \, x + \log \left (x^{2} + e\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.37, size = 14, normalized size = 1.00 \begin {gather*} x^{2} + 2 \, x + \log \left (x^{2} + e\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.30, size = 15, normalized size = 1.07
method | result | size |
default | \(x^{2}+2 x +\ln \left ({\mathrm e}+x^{2}\right )\) | \(15\) |
norman | \(x^{2}+2 x +\ln \left ({\mathrm e}+x^{2}\right )\) | \(15\) |
risch | \(x^{2}+2 x +\ln \left ({\mathrm e}+x^{2}\right )\) | \(15\) |
meijerg | \(2 \,{\mathrm e}^{\frac {1}{2}} \arctan \left (x \,{\mathrm e}^{-\frac {1}{2}}\right )+\frac {\left (2 \,{\mathrm e}+2\right ) \ln \left (1+x^{2} {\mathrm e}^{-1}\right )}{2}+{\mathrm e} \left (x^{2} {\mathrm e}^{-1}-\ln \left (1+x^{2} {\mathrm e}^{-1}\right )\right )+{\mathrm e}^{\frac {1}{2}} \left (2 x \,{\mathrm e}^{-\frac {1}{2}}-2 \arctan \left (x \,{\mathrm e}^{-\frac {1}{2}}\right )\right )\) | \(65\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.35, size = 14, normalized size = 1.00 \begin {gather*} x^{2} + 2 \, x + \log \left (x^{2} + e\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.06, size = 14, normalized size = 1.00 \begin {gather*} 2\,x+\ln \left (x^2+\mathrm {e}\right )+x^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.10, size = 14, normalized size = 1.00 \begin {gather*} x^{2} + 2 x + \log {\left (x^{2} + e \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________