Optimal. Leaf size=17 \[ \frac {1}{5} x \left (4-e^x x \log (10 x)\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.09, antiderivative size = 20, normalized size of antiderivative = 1.18, number of steps used = 8, number of rules used = 6, integrand size = 29, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.207, Rules used = {12, 2176, 2194, 1593, 2196, 2554} \begin {gather*} \frac {4 x}{5}-\frac {1}{5} e^x x^2 \log (10 x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 1593
Rule 2176
Rule 2194
Rule 2196
Rule 2554
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{5} \int \left (4-e^x x+e^x \left (-2 x-x^2\right ) \log (10 x)\right ) \, dx\\ &=\frac {4 x}{5}-\frac {1}{5} \int e^x x \, dx+\frac {1}{5} \int e^x \left (-2 x-x^2\right ) \log (10 x) \, dx\\ &=\frac {4 x}{5}-\frac {e^x x}{5}+\frac {\int e^x \, dx}{5}+\frac {1}{5} \int e^x (-2-x) x \log (10 x) \, dx\\ &=\frac {e^x}{5}+\frac {4 x}{5}-\frac {e^x x}{5}-\frac {1}{5} e^x x^2 \log (10 x)+\frac {1}{5} \int e^x x \, dx\\ &=\frac {e^x}{5}+\frac {4 x}{5}-\frac {1}{5} e^x x^2 \log (10 x)-\frac {\int e^x \, dx}{5}\\ &=\frac {4 x}{5}-\frac {1}{5} e^x x^2 \log (10 x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 16, normalized size = 0.94 \begin {gather*} -\frac {1}{5} x \left (-4+e^x x \log (10 x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.90, size = 15, normalized size = 0.88 \begin {gather*} -\frac {1}{5} \, x^{2} e^{x} \log \left (10 \, x\right ) + \frac {4}{5} \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.19, size = 15, normalized size = 0.88 \begin {gather*} -\frac {1}{5} \, x^{2} e^{x} \log \left (10 \, x\right ) + \frac {4}{5} \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 16, normalized size = 0.94
method | result | size |
default | \(\frac {4 x}{5}-\frac {{\mathrm e}^{x} \ln \left (10 x \right ) x^{2}}{5}\) | \(16\) |
norman | \(\frac {4 x}{5}-\frac {{\mathrm e}^{x} \ln \left (10 x \right ) x^{2}}{5}\) | \(16\) |
risch | \(\frac {4 x}{5}-\frac {{\mathrm e}^{x} \ln \left (10 x \right ) x^{2}}{5}\) | \(16\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.37, size = 15, normalized size = 0.88 \begin {gather*} -\frac {1}{5} \, x^{2} e^{x} \log \left (10 \, x\right ) + \frac {4}{5} \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.22, size = 15, normalized size = 0.88 \begin {gather*} \frac {4\,x}{5}-\frac {x^2\,\ln \left (10\,x\right )\,{\mathrm {e}}^x}{5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.28, size = 17, normalized size = 1.00 \begin {gather*} - \frac {x^{2} e^{x} \log {\left (10 x \right )}}{5} + \frac {4 x}{5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________