Optimal. Leaf size=29 \[ \frac {e^{e^2}-x}{x+\log \left (\log \left (-1+e^4-3 e^{x^2} x\right )\right )} \]
________________________________________________________________________________________
Rubi [F] time = 11.39, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{e^2+x^2} \left (-3-6 x^2\right )+e^{x^2} \left (3 x+6 x^3\right )+e^{e^2} \left (-1+e^4-3 e^{x^2} x\right ) \log \left (-1+e^4-3 e^{x^2} x\right )+\left (-1+e^4-3 e^{x^2} x\right ) \log \left (-1+e^4-3 e^{x^2} x\right ) \log \left (\log \left (-1+e^4-3 e^{x^2} x\right )\right )}{\left (x^2-e^4 x^2+3 e^{x^2} x^3\right ) \log \left (-1+e^4-3 e^{x^2} x\right )+\left (2 x-2 e^4 x+6 e^{x^2} x^2\right ) \log \left (-1+e^4-3 e^{x^2} x\right ) \log \left (\log \left (-1+e^4-3 e^{x^2} x\right )\right )+\left (1-e^4+3 e^{x^2} x\right ) \log \left (-1+e^4-3 e^{x^2} x\right ) \log ^2\left (\log \left (-1+e^4-3 e^{x^2} x\right )\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-e^{e^2}-\frac {3 e^{x^2} \left (e^{e^2}-x\right ) \left (1+2 x^2\right )}{\left (1-e^4+3 e^{x^2} x\right ) \log \left (-1+e^4-3 e^{x^2} x\right )}-\log \left (\log \left (-1+e^4-3 e^{x^2} x\right )\right )}{\left (x+\log \left (\log \left (-1+e^4-3 e^{x^2} x\right )\right )\right )^2} \, dx\\ &=\int \left (\frac {\left (-1+e^4\right ) \left (e^{e^2}-x\right ) \left (1+2 x^2\right )}{x \left (-1+e^4-3 e^{x^2} x\right ) \log \left (-1+e^4-3 e^{x^2} x\right ) \left (x+\log \left (\log \left (-1+e^4-3 e^{x^2} x\right )\right )\right )^2}+\frac {-e^{e^2}+x-2 e^{e^2} x^2+2 x^3-e^{e^2} x \log \left (-1+e^4-3 e^{x^2} x\right )-x \log \left (-1+e^4-3 e^{x^2} x\right ) \log \left (\log \left (-1+e^4-3 e^{x^2} x\right )\right )}{x \log \left (-1+e^4-3 e^{x^2} x\right ) \left (x+\log \left (\log \left (-1+e^4-3 e^{x^2} x\right )\right )\right )^2}\right ) \, dx\\ &=\left (-1+e^4\right ) \int \frac {\left (e^{e^2}-x\right ) \left (1+2 x^2\right )}{x \left (-1+e^4-3 e^{x^2} x\right ) \log \left (-1+e^4-3 e^{x^2} x\right ) \left (x+\log \left (\log \left (-1+e^4-3 e^{x^2} x\right )\right )\right )^2} \, dx+\int \frac {-e^{e^2}+x-2 e^{e^2} x^2+2 x^3-e^{e^2} x \log \left (-1+e^4-3 e^{x^2} x\right )-x \log \left (-1+e^4-3 e^{x^2} x\right ) \log \left (\log \left (-1+e^4-3 e^{x^2} x\right )\right )}{x \log \left (-1+e^4-3 e^{x^2} x\right ) \left (x+\log \left (\log \left (-1+e^4-3 e^{x^2} x\right )\right )\right )^2} \, dx\\ &=\left (-1+e^4\right ) \int \left (-\frac {1}{\left (-1+e^4-3 e^{x^2} x\right ) \log \left (-1+e^4-3 e^{x^2} x\right ) \left (x+\log \left (\log \left (-1+e^4-3 e^{x^2} x\right )\right )\right )^2}-\frac {e^{e^2}}{x \left (1-e^4+3 e^{x^2} x\right ) \log \left (-1+e^4-3 e^{x^2} x\right ) \left (x+\log \left (\log \left (-1+e^4-3 e^{x^2} x\right )\right )\right )^2}-\frac {2 e^{e^2} x}{\left (1-e^4+3 e^{x^2} x\right ) \log \left (-1+e^4-3 e^{x^2} x\right ) \left (x+\log \left (\log \left (-1+e^4-3 e^{x^2} x\right )\right )\right )^2}+\frac {2 x^2}{\left (1-e^4+3 e^{x^2} x\right ) \log \left (-1+e^4-3 e^{x^2} x\right ) \left (x+\log \left (\log \left (-1+e^4-3 e^{x^2} x\right )\right )\right )^2}\right ) \, dx+\int \frac {-\left (\left (e^{e^2}-x\right ) \left (1+2 x^2\right )\right )-x \log \left (-1+e^4-3 e^{x^2} x\right ) \left (e^{e^2}+\log \left (\log \left (-1+e^4-3 e^{x^2} x\right )\right )\right )}{x \log \left (-1+e^4-3 e^{x^2} x\right ) \left (x+\log \left (\log \left (-1+e^4-3 e^{x^2} x\right )\right )\right )^2} \, dx\\ &=\left (1-e^4\right ) \int \frac {1}{\left (-1+e^4-3 e^{x^2} x\right ) \log \left (-1+e^4-3 e^{x^2} x\right ) \left (x+\log \left (\log \left (-1+e^4-3 e^{x^2} x\right )\right )\right )^2} \, dx-\left (2 \left (1-e^4\right )\right ) \int \frac {x^2}{\left (1-e^4+3 e^{x^2} x\right ) \log \left (-1+e^4-3 e^{x^2} x\right ) \left (x+\log \left (\log \left (-1+e^4-3 e^{x^2} x\right )\right )\right )^2} \, dx+\left (e^{e^2} \left (1-e^4\right )\right ) \int \frac {1}{x \left (1-e^4+3 e^{x^2} x\right ) \log \left (-1+e^4-3 e^{x^2} x\right ) \left (x+\log \left (\log \left (-1+e^4-3 e^{x^2} x\right )\right )\right )^2} \, dx+\left (2 e^{e^2} \left (1-e^4\right )\right ) \int \frac {x}{\left (1-e^4+3 e^{x^2} x\right ) \log \left (-1+e^4-3 e^{x^2} x\right ) \left (x+\log \left (\log \left (-1+e^4-3 e^{x^2} x\right )\right )\right )^2} \, dx+\int \left (\frac {1}{-x-\log \left (\log \left (-1+e^4-3 e^{x^2} x\right )\right )}+\frac {\left (-e^{e^2}+x\right ) \left (1+2 x^2+x \log \left (-1+e^4-3 e^{x^2} x\right )\right )}{x \log \left (-1+e^4-3 e^{x^2} x\right ) \left (x+\log \left (\log \left (-1+e^4-3 e^{x^2} x\right )\right )\right )^2}\right ) \, dx\\ &=\left (1-e^4\right ) \int \frac {1}{\left (-1+e^4-3 e^{x^2} x\right ) \log \left (-1+e^4-3 e^{x^2} x\right ) \left (x+\log \left (\log \left (-1+e^4-3 e^{x^2} x\right )\right )\right )^2} \, dx-\left (2 \left (1-e^4\right )\right ) \int \frac {x^2}{\left (1-e^4+3 e^{x^2} x\right ) \log \left (-1+e^4-3 e^{x^2} x\right ) \left (x+\log \left (\log \left (-1+e^4-3 e^{x^2} x\right )\right )\right )^2} \, dx+\left (e^{e^2} \left (1-e^4\right )\right ) \int \frac {1}{x \left (1-e^4+3 e^{x^2} x\right ) \log \left (-1+e^4-3 e^{x^2} x\right ) \left (x+\log \left (\log \left (-1+e^4-3 e^{x^2} x\right )\right )\right )^2} \, dx+\left (2 e^{e^2} \left (1-e^4\right )\right ) \int \frac {x}{\left (1-e^4+3 e^{x^2} x\right ) \log \left (-1+e^4-3 e^{x^2} x\right ) \left (x+\log \left (\log \left (-1+e^4-3 e^{x^2} x\right )\right )\right )^2} \, dx+\int \frac {1}{-x-\log \left (\log \left (-1+e^4-3 e^{x^2} x\right )\right )} \, dx+\int \frac {\left (-e^{e^2}+x\right ) \left (1+2 x^2+x \log \left (-1+e^4-3 e^{x^2} x\right )\right )}{x \log \left (-1+e^4-3 e^{x^2} x\right ) \left (x+\log \left (\log \left (-1+e^4-3 e^{x^2} x\right )\right )\right )^2} \, dx\\ &=\left (1-e^4\right ) \int \frac {1}{\left (-1+e^4-3 e^{x^2} x\right ) \log \left (-1+e^4-3 e^{x^2} x\right ) \left (x+\log \left (\log \left (-1+e^4-3 e^{x^2} x\right )\right )\right )^2} \, dx-\left (2 \left (1-e^4\right )\right ) \int \frac {x^2}{\left (1-e^4+3 e^{x^2} x\right ) \log \left (-1+e^4-3 e^{x^2} x\right ) \left (x+\log \left (\log \left (-1+e^4-3 e^{x^2} x\right )\right )\right )^2} \, dx+\left (e^{e^2} \left (1-e^4\right )\right ) \int \frac {1}{x \left (1-e^4+3 e^{x^2} x\right ) \log \left (-1+e^4-3 e^{x^2} x\right ) \left (x+\log \left (\log \left (-1+e^4-3 e^{x^2} x\right )\right )\right )^2} \, dx+\left (2 e^{e^2} \left (1-e^4\right )\right ) \int \frac {x}{\left (1-e^4+3 e^{x^2} x\right ) \log \left (-1+e^4-3 e^{x^2} x\right ) \left (x+\log \left (\log \left (-1+e^4-3 e^{x^2} x\right )\right )\right )^2} \, dx+\int \frac {1}{-x-\log \left (\log \left (-1+e^4-3 e^{x^2} x\right )\right )} \, dx+\int \left (\frac {1+2 x^2+x \log \left (-1+e^4-3 e^{x^2} x\right )}{\log \left (-1+e^4-3 e^{x^2} x\right ) \left (x+\log \left (\log \left (-1+e^4-3 e^{x^2} x\right )\right )\right )^2}-\frac {e^{e^2} \left (1+2 x^2+x \log \left (-1+e^4-3 e^{x^2} x\right )\right )}{x \log \left (-1+e^4-3 e^{x^2} x\right ) \left (x+\log \left (\log \left (-1+e^4-3 e^{x^2} x\right )\right )\right )^2}\right ) \, dx\\ &=-\left (e^{e^2} \int \frac {1+2 x^2+x \log \left (-1+e^4-3 e^{x^2} x\right )}{x \log \left (-1+e^4-3 e^{x^2} x\right ) \left (x+\log \left (\log \left (-1+e^4-3 e^{x^2} x\right )\right )\right )^2} \, dx\right )+\left (1-e^4\right ) \int \frac {1}{\left (-1+e^4-3 e^{x^2} x\right ) \log \left (-1+e^4-3 e^{x^2} x\right ) \left (x+\log \left (\log \left (-1+e^4-3 e^{x^2} x\right )\right )\right )^2} \, dx-\left (2 \left (1-e^4\right )\right ) \int \frac {x^2}{\left (1-e^4+3 e^{x^2} x\right ) \log \left (-1+e^4-3 e^{x^2} x\right ) \left (x+\log \left (\log \left (-1+e^4-3 e^{x^2} x\right )\right )\right )^2} \, dx+\left (e^{e^2} \left (1-e^4\right )\right ) \int \frac {1}{x \left (1-e^4+3 e^{x^2} x\right ) \log \left (-1+e^4-3 e^{x^2} x\right ) \left (x+\log \left (\log \left (-1+e^4-3 e^{x^2} x\right )\right )\right )^2} \, dx+\left (2 e^{e^2} \left (1-e^4\right )\right ) \int \frac {x}{\left (1-e^4+3 e^{x^2} x\right ) \log \left (-1+e^4-3 e^{x^2} x\right ) \left (x+\log \left (\log \left (-1+e^4-3 e^{x^2} x\right )\right )\right )^2} \, dx+\int \frac {1}{-x-\log \left (\log \left (-1+e^4-3 e^{x^2} x\right )\right )} \, dx+\int \frac {1+2 x^2+x \log \left (-1+e^4-3 e^{x^2} x\right )}{\log \left (-1+e^4-3 e^{x^2} x\right ) \left (x+\log \left (\log \left (-1+e^4-3 e^{x^2} x\right )\right )\right )^2} \, dx\\ &=-\left (e^{e^2} \int \left (\frac {1}{\left (x+\log \left (\log \left (-1+e^4-3 e^{x^2} x\right )\right )\right )^2}+\frac {1}{x \log \left (-1+e^4-3 e^{x^2} x\right ) \left (x+\log \left (\log \left (-1+e^4-3 e^{x^2} x\right )\right )\right )^2}+\frac {2 x}{\log \left (-1+e^4-3 e^{x^2} x\right ) \left (x+\log \left (\log \left (-1+e^4-3 e^{x^2} x\right )\right )\right )^2}\right ) \, dx\right )+\left (1-e^4\right ) \int \frac {1}{\left (-1+e^4-3 e^{x^2} x\right ) \log \left (-1+e^4-3 e^{x^2} x\right ) \left (x+\log \left (\log \left (-1+e^4-3 e^{x^2} x\right )\right )\right )^2} \, dx-\left (2 \left (1-e^4\right )\right ) \int \frac {x^2}{\left (1-e^4+3 e^{x^2} x\right ) \log \left (-1+e^4-3 e^{x^2} x\right ) \left (x+\log \left (\log \left (-1+e^4-3 e^{x^2} x\right )\right )\right )^2} \, dx+\left (e^{e^2} \left (1-e^4\right )\right ) \int \frac {1}{x \left (1-e^4+3 e^{x^2} x\right ) \log \left (-1+e^4-3 e^{x^2} x\right ) \left (x+\log \left (\log \left (-1+e^4-3 e^{x^2} x\right )\right )\right )^2} \, dx+\left (2 e^{e^2} \left (1-e^4\right )\right ) \int \frac {x}{\left (1-e^4+3 e^{x^2} x\right ) \log \left (-1+e^4-3 e^{x^2} x\right ) \left (x+\log \left (\log \left (-1+e^4-3 e^{x^2} x\right )\right )\right )^2} \, dx+\int \frac {1}{-x-\log \left (\log \left (-1+e^4-3 e^{x^2} x\right )\right )} \, dx+\int \left (\frac {x}{\left (x+\log \left (\log \left (-1+e^4-3 e^{x^2} x\right )\right )\right )^2}+\frac {1}{\log \left (-1+e^4-3 e^{x^2} x\right ) \left (x+\log \left (\log \left (-1+e^4-3 e^{x^2} x\right )\right )\right )^2}+\frac {2 x^2}{\log \left (-1+e^4-3 e^{x^2} x\right ) \left (x+\log \left (\log \left (-1+e^4-3 e^{x^2} x\right )\right )\right )^2}\right ) \, dx\\ &=2 \int \frac {x^2}{\log \left (-1+e^4-3 e^{x^2} x\right ) \left (x+\log \left (\log \left (-1+e^4-3 e^{x^2} x\right )\right )\right )^2} \, dx-e^{e^2} \int \frac {1}{\left (x+\log \left (\log \left (-1+e^4-3 e^{x^2} x\right )\right )\right )^2} \, dx-e^{e^2} \int \frac {1}{x \log \left (-1+e^4-3 e^{x^2} x\right ) \left (x+\log \left (\log \left (-1+e^4-3 e^{x^2} x\right )\right )\right )^2} \, dx-\left (2 e^{e^2}\right ) \int \frac {x}{\log \left (-1+e^4-3 e^{x^2} x\right ) \left (x+\log \left (\log \left (-1+e^4-3 e^{x^2} x\right )\right )\right )^2} \, dx+\left (1-e^4\right ) \int \frac {1}{\left (-1+e^4-3 e^{x^2} x\right ) \log \left (-1+e^4-3 e^{x^2} x\right ) \left (x+\log \left (\log \left (-1+e^4-3 e^{x^2} x\right )\right )\right )^2} \, dx-\left (2 \left (1-e^4\right )\right ) \int \frac {x^2}{\left (1-e^4+3 e^{x^2} x\right ) \log \left (-1+e^4-3 e^{x^2} x\right ) \left (x+\log \left (\log \left (-1+e^4-3 e^{x^2} x\right )\right )\right )^2} \, dx+\left (e^{e^2} \left (1-e^4\right )\right ) \int \frac {1}{x \left (1-e^4+3 e^{x^2} x\right ) \log \left (-1+e^4-3 e^{x^2} x\right ) \left (x+\log \left (\log \left (-1+e^4-3 e^{x^2} x\right )\right )\right )^2} \, dx+\left (2 e^{e^2} \left (1-e^4\right )\right ) \int \frac {x}{\left (1-e^4+3 e^{x^2} x\right ) \log \left (-1+e^4-3 e^{x^2} x\right ) \left (x+\log \left (\log \left (-1+e^4-3 e^{x^2} x\right )\right )\right )^2} \, dx+\int \frac {1}{-x-\log \left (\log \left (-1+e^4-3 e^{x^2} x\right )\right )} \, dx+\int \frac {x}{\left (x+\log \left (\log \left (-1+e^4-3 e^{x^2} x\right )\right )\right )^2} \, dx+\int \frac {1}{\log \left (-1+e^4-3 e^{x^2} x\right ) \left (x+\log \left (\log \left (-1+e^4-3 e^{x^2} x\right )\right )\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.20, size = 29, normalized size = 1.00 \begin {gather*} \frac {e^{e^2}-x}{x+\log \left (\log \left (-1+e^4-3 e^{x^2} x\right )\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.23, size = 42, normalized size = 1.45 \begin {gather*} -\frac {x - e^{\left (e^{2}\right )}}{x + \log \left (\log \left (-{\left (3 \, x e^{\left (x^{2} + e^{2}\right )} - {\left (e^{4} - 1\right )} e^{\left (e^{2}\right )}\right )} e^{\left (-e^{2}\right )}\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {{\left (3 \, x e^{\left (x^{2}\right )} - e^{4} + 1\right )} e^{\left (e^{2}\right )} \log \left (-3 \, x e^{\left (x^{2}\right )} + e^{4} - 1\right ) + {\left (3 \, x e^{\left (x^{2}\right )} - e^{4} + 1\right )} \log \left (-3 \, x e^{\left (x^{2}\right )} + e^{4} - 1\right ) \log \left (\log \left (-3 \, x e^{\left (x^{2}\right )} + e^{4} - 1\right )\right ) + 3 \, {\left (2 \, x^{2} + 1\right )} e^{\left (x^{2} + e^{2}\right )} - 3 \, {\left (2 \, x^{3} + x\right )} e^{\left (x^{2}\right )}}{{\left (3 \, x e^{\left (x^{2}\right )} - e^{4} + 1\right )} \log \left (-3 \, x e^{\left (x^{2}\right )} + e^{4} - 1\right ) \log \left (\log \left (-3 \, x e^{\left (x^{2}\right )} + e^{4} - 1\right )\right )^{2} + 2 \, {\left (3 \, x^{2} e^{\left (x^{2}\right )} - x e^{4} + x\right )} \log \left (-3 \, x e^{\left (x^{2}\right )} + e^{4} - 1\right ) \log \left (\log \left (-3 \, x e^{\left (x^{2}\right )} + e^{4} - 1\right )\right ) + {\left (3 \, x^{3} e^{\left (x^{2}\right )} - x^{2} e^{4} + x^{2}\right )} \log \left (-3 \, x e^{\left (x^{2}\right )} + e^{4} - 1\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 26, normalized size = 0.90
method | result | size |
risch | \(\frac {{\mathrm e}^{{\mathrm e}^{2}}-x}{\ln \left (\ln \left (-3 \,{\mathrm e}^{x^{2}} x +{\mathrm e}^{4}-1\right )\right )+x}\) | \(26\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.47, size = 26, normalized size = 0.90 \begin {gather*} -\frac {x - e^{\left (e^{2}\right )}}{x + \log \left (\log \left (-3 \, x e^{\left (x^{2}\right )} + e^{4} - 1\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int -\frac {\ln \left ({\mathrm {e}}^4-3\,x\,{\mathrm {e}}^{x^2}-1\right )\,\ln \left (\ln \left ({\mathrm {e}}^4-3\,x\,{\mathrm {e}}^{x^2}-1\right )\right )\,\left (3\,x\,{\mathrm {e}}^{x^2}-{\mathrm {e}}^4+1\right )-{\mathrm {e}}^{x^2}\,\left (6\,x^3+3\,x\right )+\ln \left ({\mathrm {e}}^4-3\,x\,{\mathrm {e}}^{x^2}-1\right )\,{\mathrm {e}}^{{\mathrm {e}}^2}\,\left (3\,x\,{\mathrm {e}}^{x^2}-{\mathrm {e}}^4+1\right )+{\mathrm {e}}^{x^2}\,{\mathrm {e}}^{{\mathrm {e}}^2}\,\left (6\,x^2+3\right )}{\ln \left ({\mathrm {e}}^4-3\,x\,{\mathrm {e}}^{x^2}-1\right )\,\left (3\,x\,{\mathrm {e}}^{x^2}-{\mathrm {e}}^4+1\right )\,{\ln \left (\ln \left ({\mathrm {e}}^4-3\,x\,{\mathrm {e}}^{x^2}-1\right )\right )}^2+\ln \left ({\mathrm {e}}^4-3\,x\,{\mathrm {e}}^{x^2}-1\right )\,\left (2\,x-2\,x\,{\mathrm {e}}^4+6\,x^2\,{\mathrm {e}}^{x^2}\right )\,\ln \left (\ln \left ({\mathrm {e}}^4-3\,x\,{\mathrm {e}}^{x^2}-1\right )\right )+\ln \left ({\mathrm {e}}^4-3\,x\,{\mathrm {e}}^{x^2}-1\right )\,\left (3\,x^3\,{\mathrm {e}}^{x^2}-x^2\,{\mathrm {e}}^4+x^2\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 1.54, size = 24, normalized size = 0.83 \begin {gather*} \frac {- x + e^{e^{2}}}{x + \log {\left (\log {\left (- 3 x e^{x^{2}} - 1 + e^{4} \right )} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________