Optimal. Leaf size=21 \[ -e^{16}+x \left (x-\frac {9}{256} \left (e^x+x\right )^2\right ) \]
________________________________________________________________________________________
Rubi [B] time = 0.07, antiderivative size = 44, normalized size of antiderivative = 2.10, number of steps used = 12, number of rules used = 5, integrand size = 37, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.135, Rules used = {12, 2176, 2194, 1593, 2196} \begin {gather*} -\frac {9 x^3}{256}-\frac {9 e^x x^2}{128}+x^2+\frac {9 e^{2 x}}{512}-\frac {9}{512} e^{2 x} (2 x+1) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 1593
Rule 2176
Rule 2194
Rule 2196
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{256} \int \left (e^{2 x} (-9-18 x)+512 x-27 x^2+e^x \left (-36 x-18 x^2\right )\right ) \, dx\\ &=x^2-\frac {9 x^3}{256}+\frac {1}{256} \int e^{2 x} (-9-18 x) \, dx+\frac {1}{256} \int e^x \left (-36 x-18 x^2\right ) \, dx\\ &=x^2-\frac {9 x^3}{256}-\frac {9}{512} e^{2 x} (1+2 x)+\frac {1}{256} \int e^x (-36-18 x) x \, dx+\frac {9}{256} \int e^{2 x} \, dx\\ &=\frac {9 e^{2 x}}{512}+x^2-\frac {9 x^3}{256}-\frac {9}{512} e^{2 x} (1+2 x)+\frac {1}{256} \int \left (-36 e^x x-18 e^x x^2\right ) \, dx\\ &=\frac {9 e^{2 x}}{512}+x^2-\frac {9 x^3}{256}-\frac {9}{512} e^{2 x} (1+2 x)-\frac {9}{128} \int e^x x^2 \, dx-\frac {9}{64} \int e^x x \, dx\\ &=\frac {9 e^{2 x}}{512}-\frac {9 e^x x}{64}+x^2-\frac {9 e^x x^2}{128}-\frac {9 x^3}{256}-\frac {9}{512} e^{2 x} (1+2 x)+\frac {9 \int e^x \, dx}{64}+\frac {9}{64} \int e^x x \, dx\\ &=\frac {9 e^x}{64}+\frac {9 e^{2 x}}{512}+x^2-\frac {9 e^x x^2}{128}-\frac {9 x^3}{256}-\frac {9}{512} e^{2 x} (1+2 x)-\frac {9 \int e^x \, dx}{64}\\ &=\frac {9 e^{2 x}}{512}+x^2-\frac {9 e^x x^2}{128}-\frac {9 x^3}{256}-\frac {9}{512} e^{2 x} (1+2 x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 31, normalized size = 1.48 \begin {gather*} \frac {1}{256} \left (-9 e^{2 x} x+256 x^2-18 e^x x^2-9 x^3\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.79, size = 23, normalized size = 1.10 \begin {gather*} -\frac {9}{256} \, x^{3} - \frac {9}{128} \, x^{2} e^{x} + x^{2} - \frac {9}{256} \, x e^{\left (2 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.24, size = 23, normalized size = 1.10 \begin {gather*} -\frac {9}{256} \, x^{3} - \frac {9}{128} \, x^{2} e^{x} + x^{2} - \frac {9}{256} \, x e^{\left (2 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 24, normalized size = 1.14
method | result | size |
default | \(x^{2}-\frac {9 x^{3}}{256}-\frac {9 x \,{\mathrm e}^{2 x}}{256}-\frac {9 \,{\mathrm e}^{x} x^{2}}{128}\) | \(24\) |
norman | \(x^{2}-\frac {9 x^{3}}{256}-\frac {9 x \,{\mathrm e}^{2 x}}{256}-\frac {9 \,{\mathrm e}^{x} x^{2}}{128}\) | \(24\) |
risch | \(x^{2}-\frac {9 x^{3}}{256}-\frac {9 x \,{\mathrm e}^{2 x}}{256}-\frac {9 \,{\mathrm e}^{x} x^{2}}{128}\) | \(24\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.36, size = 23, normalized size = 1.10 \begin {gather*} -\frac {9}{256} \, x^{3} - \frac {9}{128} \, x^{2} e^{x} + x^{2} - \frac {9}{256} \, x e^{\left (2 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.16, size = 23, normalized size = 1.10 \begin {gather*} -\frac {x\,\left (9\,{\mathrm {e}}^{2\,x}-256\,x+18\,x\,{\mathrm {e}}^x+9\,x^2\right )}{256} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.11, size = 29, normalized size = 1.38 \begin {gather*} - \frac {9 x^{3}}{256} - \frac {9 x^{2} e^{x}}{128} + x^{2} - \frac {9 x e^{2 x}}{256} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________