Optimal. Leaf size=36 \[ \frac {5}{5-x}+\left (-1-x+\frac {x^2 \left (e^2-x^2\right )}{(1+\log (x))^2}\right )^2 \]
________________________________________________________________________________________
Rubi [B] time = 9.84, antiderivative size = 103, normalized size of antiderivative = 2.86, number of steps used = 74, number of rules used = 8, integrand size = 424, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.019, Rules used = {6741, 6742, 1850, 2353, 2306, 2309, 2178, 2356} \begin {gather*} \frac {x^8}{(\log (x)+1)^4}-\frac {2 e^2 x^6}{(\log (x)+1)^4}+\frac {2 x^5}{(\log (x)+1)^2}+\frac {2 x^4}{(\log (x)+1)^2}+\frac {e^4 x^4}{(\log (x)+1)^4}-\frac {2 e^2 x^3}{(\log (x)+1)^2}+x^2-\frac {2 e^2 x^2}{(\log (x)+1)^2}+2 x+\frac {5}{5-x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 1850
Rule 2178
Rule 2306
Rule 2309
Rule 2353
Rule 2356
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {55+30 x-18 x^2+102 x^3+110 x^4-56 x^5+6 x^6+100 x^7-40 x^8+4 x^9+e^2 \left (-50 x^2+20 x^3-2 x^4-100 x^5+40 x^6-4 x^7\right )+\left (275+150 x-90 x^2+410 x^3+390 x^4-204 x^5+22 x^6+200 x^7-80 x^8+8 x^9+e^4 \left (100 x^3-40 x^4+4 x^5\right )+e^2 \left (-100 x-210 x^2+96 x^3-10 x^4-300 x^5+120 x^6-12 x^7\right )\right ) \log (x)+\left (550+300 x-180 x^2+520 x^3+450 x^4-240 x^5+26 x^6+e^2 \left (-200 x-270 x^2+132 x^3-14 x^4\right )\right ) \log ^2(x)+\left (550+300 x-180 x^2+220 x^3+170 x^4-92 x^5+10 x^6+e^2 \left (-100 x-110 x^2+56 x^3-6 x^4\right )\right ) \log ^3(x)+\left (275+150 x-90 x^2+10 x^3\right ) \log ^4(x)+\left (55+30 x-18 x^2+2 x^3\right ) \log ^5(x)}{(5-x)^2 (1+\log (x))^5} \, dx\\ &=\int \left (\frac {55+30 x-18 x^2+2 x^3}{(-5+x)^2}-\frac {4 x^3 \left (-e^2+x^2\right )^2}{(1+\log (x))^5}+\frac {4 x^3 \left (e^4-3 e^2 x^2+2 x^4\right )}{(1+\log (x))^4}-\frac {4 x (1+x) \left (-e^2+x^2\right )}{(1+\log (x))^3}+\frac {2 x \left (-2 e^2-3 e^2 x+4 x^2+5 x^3\right )}{(1+\log (x))^2}\right ) \, dx\\ &=2 \int \frac {x \left (-2 e^2-3 e^2 x+4 x^2+5 x^3\right )}{(1+\log (x))^2} \, dx-4 \int \frac {x^3 \left (-e^2+x^2\right )^2}{(1+\log (x))^5} \, dx+4 \int \frac {x^3 \left (e^4-3 e^2 x^2+2 x^4\right )}{(1+\log (x))^4} \, dx-4 \int \frac {x (1+x) \left (-e^2+x^2\right )}{(1+\log (x))^3} \, dx+\int \frac {55+30 x-18 x^2+2 x^3}{(-5+x)^2} \, dx\\ &=2 \int \left (-\frac {2 e^2 x}{(1+\log (x))^2}-\frac {3 e^2 x^2}{(1+\log (x))^2}+\frac {4 x^3}{(1+\log (x))^2}+\frac {5 x^4}{(1+\log (x))^2}\right ) \, dx-4 \int \left (\frac {e^4 x^3}{(1+\log (x))^5}-\frac {2 e^2 x^5}{(1+\log (x))^5}+\frac {x^7}{(1+\log (x))^5}\right ) \, dx+4 \int \left (\frac {e^4 x^3}{(1+\log (x))^4}-\frac {3 e^2 x^5}{(1+\log (x))^4}+\frac {2 x^7}{(1+\log (x))^4}\right ) \, dx-4 \int \left (-\frac {e^2 x}{(1+\log (x))^3}-\frac {e^2 x^2}{(1+\log (x))^3}+\frac {x^3}{(1+\log (x))^3}+\frac {x^4}{(1+\log (x))^3}\right ) \, dx+\int \left (2+\frac {5}{(-5+x)^2}+2 x\right ) \, dx\\ &=\frac {5}{5-x}+2 x+x^2-4 \int \frac {x^7}{(1+\log (x))^5} \, dx-4 \int \frac {x^3}{(1+\log (x))^3} \, dx-4 \int \frac {x^4}{(1+\log (x))^3} \, dx+8 \int \frac {x^7}{(1+\log (x))^4} \, dx+8 \int \frac {x^3}{(1+\log (x))^2} \, dx+10 \int \frac {x^4}{(1+\log (x))^2} \, dx+\left (4 e^2\right ) \int \frac {x}{(1+\log (x))^3} \, dx+\left (4 e^2\right ) \int \frac {x^2}{(1+\log (x))^3} \, dx-\left (4 e^2\right ) \int \frac {x}{(1+\log (x))^2} \, dx-\left (6 e^2\right ) \int \frac {x^2}{(1+\log (x))^2} \, dx+\left (8 e^2\right ) \int \frac {x^5}{(1+\log (x))^5} \, dx-\left (12 e^2\right ) \int \frac {x^5}{(1+\log (x))^4} \, dx-\left (4 e^4\right ) \int \frac {x^3}{(1+\log (x))^5} \, dx+\left (4 e^4\right ) \int \frac {x^3}{(1+\log (x))^4} \, dx\\ &=\frac {5}{5-x}+2 x+x^2+\frac {e^4 x^4}{(1+\log (x))^4}-\frac {2 e^2 x^6}{(1+\log (x))^4}+\frac {x^8}{(1+\log (x))^4}-\frac {4 e^4 x^4}{3 (1+\log (x))^3}+\frac {4 e^2 x^6}{(1+\log (x))^3}-\frac {8 x^8}{3 (1+\log (x))^3}-\frac {2 e^2 x^2}{(1+\log (x))^2}-\frac {2 e^2 x^3}{(1+\log (x))^2}+\frac {2 x^4}{(1+\log (x))^2}+\frac {2 x^5}{(1+\log (x))^2}+\frac {4 e^2 x^2}{1+\log (x)}+\frac {6 e^2 x^3}{1+\log (x)}-\frac {8 x^4}{1+\log (x)}-\frac {10 x^5}{1+\log (x)}-8 \int \frac {x^7}{(1+\log (x))^4} \, dx-8 \int \frac {x^3}{(1+\log (x))^2} \, dx-10 \int \frac {x^4}{(1+\log (x))^2} \, dx+\frac {64}{3} \int \frac {x^7}{(1+\log (x))^3} \, dx+32 \int \frac {x^3}{1+\log (x)} \, dx+50 \int \frac {x^4}{1+\log (x)} \, dx+\left (4 e^2\right ) \int \frac {x}{(1+\log (x))^2} \, dx+\left (6 e^2\right ) \int \frac {x^2}{(1+\log (x))^2} \, dx-\left (8 e^2\right ) \int \frac {x}{1+\log (x)} \, dx+\left (12 e^2\right ) \int \frac {x^5}{(1+\log (x))^4} \, dx-\left (18 e^2\right ) \int \frac {x^2}{1+\log (x)} \, dx-\left (24 e^2\right ) \int \frac {x^5}{(1+\log (x))^3} \, dx-\left (4 e^4\right ) \int \frac {x^3}{(1+\log (x))^4} \, dx+\frac {1}{3} \left (16 e^4\right ) \int \frac {x^3}{(1+\log (x))^3} \, dx\\ &=\frac {5}{5-x}+2 x+x^2+\frac {e^4 x^4}{(1+\log (x))^4}-\frac {2 e^2 x^6}{(1+\log (x))^4}+\frac {x^8}{(1+\log (x))^4}-\frac {2 e^2 x^2}{(1+\log (x))^2}-\frac {2 e^2 x^3}{(1+\log (x))^2}+\frac {2 x^4}{(1+\log (x))^2}-\frac {8 e^4 x^4}{3 (1+\log (x))^2}+\frac {2 x^5}{(1+\log (x))^2}+\frac {12 e^2 x^6}{(1+\log (x))^2}-\frac {32 x^8}{3 (1+\log (x))^2}-\frac {64}{3} \int \frac {x^7}{(1+\log (x))^3} \, dx-32 \int \frac {x^3}{1+\log (x)} \, dx+32 \operatorname {Subst}\left (\int \frac {e^{4 x}}{1+x} \, dx,x,\log (x)\right )-50 \int \frac {x^4}{1+\log (x)} \, dx+50 \operatorname {Subst}\left (\int \frac {e^{5 x}}{1+x} \, dx,x,\log (x)\right )+\frac {256}{3} \int \frac {x^7}{(1+\log (x))^2} \, dx+\left (8 e^2\right ) \int \frac {x}{1+\log (x)} \, dx-\left (8 e^2\right ) \operatorname {Subst}\left (\int \frac {e^{2 x}}{1+x} \, dx,x,\log (x)\right )+\left (18 e^2\right ) \int \frac {x^2}{1+\log (x)} \, dx-\left (18 e^2\right ) \operatorname {Subst}\left (\int \frac {e^{3 x}}{1+x} \, dx,x,\log (x)\right )+\left (24 e^2\right ) \int \frac {x^5}{(1+\log (x))^3} \, dx-\left (72 e^2\right ) \int \frac {x^5}{(1+\log (x))^2} \, dx-\frac {1}{3} \left (16 e^4\right ) \int \frac {x^3}{(1+\log (x))^3} \, dx+\frac {1}{3} \left (32 e^4\right ) \int \frac {x^3}{(1+\log (x))^2} \, dx\\ &=\frac {5}{5-x}+2 x+x^2-8 \text {Ei}(2 (1+\log (x)))-\frac {18 \text {Ei}(3 (1+\log (x)))}{e}+\frac {32 \text {Ei}(4 (1+\log (x)))}{e^4}+\frac {50 \text {Ei}(5 (1+\log (x)))}{e^5}+\frac {e^4 x^4}{(1+\log (x))^4}-\frac {2 e^2 x^6}{(1+\log (x))^4}+\frac {x^8}{(1+\log (x))^4}-\frac {2 e^2 x^2}{(1+\log (x))^2}-\frac {2 e^2 x^3}{(1+\log (x))^2}+\frac {2 x^4}{(1+\log (x))^2}+\frac {2 x^5}{(1+\log (x))^2}-\frac {32 e^4 x^4}{3 (1+\log (x))}+\frac {72 e^2 x^6}{1+\log (x)}-\frac {256 x^8}{3 (1+\log (x))}-32 \operatorname {Subst}\left (\int \frac {e^{4 x}}{1+x} \, dx,x,\log (x)\right )-50 \operatorname {Subst}\left (\int \frac {e^{5 x}}{1+x} \, dx,x,\log (x)\right )-\frac {256}{3} \int \frac {x^7}{(1+\log (x))^2} \, dx+\frac {2048}{3} \int \frac {x^7}{1+\log (x)} \, dx+\left (8 e^2\right ) \operatorname {Subst}\left (\int \frac {e^{2 x}}{1+x} \, dx,x,\log (x)\right )+\left (18 e^2\right ) \operatorname {Subst}\left (\int \frac {e^{3 x}}{1+x} \, dx,x,\log (x)\right )+\left (72 e^2\right ) \int \frac {x^5}{(1+\log (x))^2} \, dx-\left (432 e^2\right ) \int \frac {x^5}{1+\log (x)} \, dx-\frac {1}{3} \left (32 e^4\right ) \int \frac {x^3}{(1+\log (x))^2} \, dx+\frac {1}{3} \left (128 e^4\right ) \int \frac {x^3}{1+\log (x)} \, dx\\ &=\frac {5}{5-x}+2 x+x^2+\frac {e^4 x^4}{(1+\log (x))^4}-\frac {2 e^2 x^6}{(1+\log (x))^4}+\frac {x^8}{(1+\log (x))^4}-\frac {2 e^2 x^2}{(1+\log (x))^2}-\frac {2 e^2 x^3}{(1+\log (x))^2}+\frac {2 x^4}{(1+\log (x))^2}+\frac {2 x^5}{(1+\log (x))^2}-\frac {2048}{3} \int \frac {x^7}{1+\log (x)} \, dx+\frac {2048}{3} \operatorname {Subst}\left (\int \frac {e^{8 x}}{1+x} \, dx,x,\log (x)\right )+\left (432 e^2\right ) \int \frac {x^5}{1+\log (x)} \, dx-\left (432 e^2\right ) \operatorname {Subst}\left (\int \frac {e^{6 x}}{1+x} \, dx,x,\log (x)\right )-\frac {1}{3} \left (128 e^4\right ) \int \frac {x^3}{1+\log (x)} \, dx+\frac {1}{3} \left (128 e^4\right ) \operatorname {Subst}\left (\int \frac {e^{4 x}}{1+x} \, dx,x,\log (x)\right )\\ &=\frac {5}{5-x}+2 x+x^2+\frac {128}{3} \text {Ei}(4 (1+\log (x)))-\frac {432 \text {Ei}(6 (1+\log (x)))}{e^4}+\frac {2048 \text {Ei}(8 (1+\log (x)))}{3 e^8}+\frac {e^4 x^4}{(1+\log (x))^4}-\frac {2 e^2 x^6}{(1+\log (x))^4}+\frac {x^8}{(1+\log (x))^4}-\frac {2 e^2 x^2}{(1+\log (x))^2}-\frac {2 e^2 x^3}{(1+\log (x))^2}+\frac {2 x^4}{(1+\log (x))^2}+\frac {2 x^5}{(1+\log (x))^2}-\frac {2048}{3} \operatorname {Subst}\left (\int \frac {e^{8 x}}{1+x} \, dx,x,\log (x)\right )+\left (432 e^2\right ) \operatorname {Subst}\left (\int \frac {e^{6 x}}{1+x} \, dx,x,\log (x)\right )-\frac {1}{3} \left (128 e^4\right ) \operatorname {Subst}\left (\int \frac {e^{4 x}}{1+x} \, dx,x,\log (x)\right )\\ &=\frac {5}{5-x}+2 x+x^2+\frac {e^4 x^4}{(1+\log (x))^4}-\frac {2 e^2 x^6}{(1+\log (x))^4}+\frac {x^8}{(1+\log (x))^4}-\frac {2 e^2 x^2}{(1+\log (x))^2}-\frac {2 e^2 x^3}{(1+\log (x))^2}+\frac {2 x^4}{(1+\log (x))^2}+\frac {2 x^5}{(1+\log (x))^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.20, size = 58, normalized size = 1.61 \begin {gather*} -\frac {5}{-5+x}+2 x+x^2+\frac {x^4 \left (e^2-x^2\right )^2}{(1+\log (x))^4}+\frac {2 x^2 (1+x) \left (-e^2+x^2\right )}{(1+\log (x))^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 1.00, size = 250, normalized size = 6.94 \begin {gather*} \frac {x^{9} - 5 \, x^{8} + 2 \, x^{6} - 8 \, x^{5} + {\left (x^{3} - 3 \, x^{2} - 10 \, x - 5\right )} \log \relax (x)^{4} - 10 \, x^{4} + 4 \, {\left (x^{3} - 3 \, x^{2} - 10 \, x - 5\right )} \log \relax (x)^{3} + x^{3} + 2 \, {\left (x^{6} - 4 \, x^{5} - 5 \, x^{4} + 3 \, x^{3} - 9 \, x^{2} - {\left (x^{4} - 4 \, x^{3} - 5 \, x^{2}\right )} e^{2} - 30 \, x - 15\right )} \log \relax (x)^{2} - 3 \, x^{2} + {\left (x^{5} - 5 \, x^{4}\right )} e^{4} - 2 \, {\left (x^{7} - 5 \, x^{6} + x^{4} - 4 \, x^{3} - 5 \, x^{2}\right )} e^{2} + 4 \, {\left (x^{6} - 4 \, x^{5} - 5 \, x^{4} + x^{3} - 3 \, x^{2} - {\left (x^{4} - 4 \, x^{3} - 5 \, x^{2}\right )} e^{2} - 10 \, x - 5\right )} \log \relax (x) - 10 \, x - 5}{{\left (x - 5\right )} \log \relax (x)^{4} + 4 \, {\left (x - 5\right )} \log \relax (x)^{3} + 6 \, {\left (x - 5\right )} \log \relax (x)^{2} + 4 \, {\left (x - 5\right )} \log \relax (x) + x - 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.34, size = 360, normalized size = 10.00 \begin {gather*} \frac {x^{9} - 5 \, x^{8} - 2 \, x^{7} e^{2} + 2 \, x^{6} \log \relax (x)^{2} + 10 \, x^{6} e^{2} + 4 \, x^{6} \log \relax (x) - 8 \, x^{5} \log \relax (x)^{2} - 2 \, x^{4} e^{2} \log \relax (x)^{2} + x^{3} \log \relax (x)^{4} + 2 \, x^{6} + x^{5} e^{4} - 16 \, x^{5} \log \relax (x) - 4 \, x^{4} e^{2} \log \relax (x) - 10 \, x^{4} \log \relax (x)^{2} + 8 \, x^{3} e^{2} \log \relax (x)^{2} + 4 \, x^{3} \log \relax (x)^{3} - 3 \, x^{2} \log \relax (x)^{4} - 8 \, x^{5} - 5 \, x^{4} e^{4} - 2 \, x^{4} e^{2} - 20 \, x^{4} \log \relax (x) + 16 \, x^{3} e^{2} \log \relax (x) + 6 \, x^{3} \log \relax (x)^{2} + 10 \, x^{2} e^{2} \log \relax (x)^{2} - 12 \, x^{2} \log \relax (x)^{3} - 10 \, x \log \relax (x)^{4} - 10 \, x^{4} + 8 \, x^{3} e^{2} + 4 \, x^{3} \log \relax (x) + 20 \, x^{2} e^{2} \log \relax (x) - 18 \, x^{2} \log \relax (x)^{2} - 40 \, x \log \relax (x)^{3} - 5 \, \log \relax (x)^{4} + x^{3} + 10 \, x^{2} e^{2} - 12 \, x^{2} \log \relax (x) - 60 \, x \log \relax (x)^{2} - 20 \, \log \relax (x)^{3} - 3 \, x^{2} - 40 \, x \log \relax (x) - 30 \, \log \relax (x)^{2} - 10 \, x - 20 \, \log \relax (x) - 5}{x \log \relax (x)^{4} + 4 \, x \log \relax (x)^{3} - 5 \, \log \relax (x)^{4} + 6 \, x \log \relax (x)^{2} - 20 \, \log \relax (x)^{3} + 4 \, x \log \relax (x) - 30 \, \log \relax (x)^{2} + x - 20 \, \log \relax (x) - 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.09, size = 129, normalized size = 3.58
method | result | size |
risch | \(\frac {x^{3}-3 x^{2}-10 x -5}{x -5}+\frac {x^{2} \left (x^{6}-2 x^{4} {\mathrm e}^{2}+2 x^{3} \ln \relax (x )^{2}+x^{2} {\mathrm e}^{4}-2 x \,{\mathrm e}^{2} \ln \relax (x )^{2}+4 x^{3} \ln \relax (x )+2 x^{2} \ln \relax (x )^{2}-4 x \,{\mathrm e}^{2} \ln \relax (x )-2 \,{\mathrm e}^{2} \ln \relax (x )^{2}+2 x^{3}+4 x^{2} \ln \relax (x )-2 \,{\mathrm e}^{2} x -4 \,{\mathrm e}^{2} \ln \relax (x )+2 x^{2}-2 \,{\mathrm e}^{2}\right )}{\left (\ln \relax (x )+1\right )^{4}}\) | \(129\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.48, size = 244, normalized size = 6.78 \begin {gather*} \frac {x^{9} - 5 \, x^{8} - 2 \, x^{7} e^{2} + 2 \, x^{6} {\left (5 \, e^{2} + 1\right )} + x^{5} {\left (e^{4} - 8\right )} - x^{4} {\left (5 \, e^{4} + 2 \, e^{2} + 10\right )} + {\left (x^{3} - 3 \, x^{2} - 10 \, x - 5\right )} \log \relax (x)^{4} + x^{3} {\left (8 \, e^{2} + 1\right )} + 4 \, {\left (x^{3} - 3 \, x^{2} - 10 \, x - 5\right )} \log \relax (x)^{3} + x^{2} {\left (10 \, e^{2} - 3\right )} + 2 \, {\left (x^{6} - 4 \, x^{5} - x^{4} {\left (e^{2} + 5\right )} + x^{3} {\left (4 \, e^{2} + 3\right )} + x^{2} {\left (5 \, e^{2} - 9\right )} - 30 \, x - 15\right )} \log \relax (x)^{2} + 4 \, {\left (x^{6} - 4 \, x^{5} - x^{4} {\left (e^{2} + 5\right )} + x^{3} {\left (4 \, e^{2} + 1\right )} + x^{2} {\left (5 \, e^{2} - 3\right )} - 10 \, x - 5\right )} \log \relax (x) - 10 \, x - 5}{{\left (x - 5\right )} \log \relax (x)^{4} + 4 \, {\left (x - 5\right )} \log \relax (x)^{3} + 6 \, {\left (x - 5\right )} \log \relax (x)^{2} + 4 \, {\left (x - 5\right )} \log \relax (x) + x - 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.14, size = 783, normalized size = 21.75 \begin {gather*} 2\,x-\frac {5}{x-5}-\frac {-\frac {x\,\left (-125\,x^4-64\,x^3+27\,{\mathrm {e}}^2\,x^2+8\,{\mathrm {e}}^2\,x\right )\,{\ln \relax (x)}^3}{12}-\frac {x\,\left (-475\,x^4-256\,x^3+117\,{\mathrm {e}}^2\,x^2+40\,{\mathrm {e}}^2\,x\right )\,{\ln \relax (x)}^2}{12}+\frac {x\,\left (32\,x^3\,{\mathrm {e}}^4-147\,x^2\,{\mathrm {e}}^2-52\,x\,{\mathrm {e}}^2-216\,x^5\,{\mathrm {e}}^2+312\,x^3+565\,x^4+256\,x^7\right )\,\ln \relax (x)}{12}+\frac {x\,\left (16\,x^3\,{\mathrm {e}}^4-53\,x^2\,{\mathrm {e}}^2-16\,x\,{\mathrm {e}}^2-144\,x^5\,{\mathrm {e}}^2+116\,x^3+211\,x^4+192\,x^7\right )}{12}}{{\ln \relax (x)}^2+2\,\ln \relax (x)+1}-\ln \relax (x)\,\left (-\frac {375\,x^5}{2}-\frac {256\,x^4}{3}+\frac {63\,{\mathrm {e}}^2\,x^3}{2}+8\,{\mathrm {e}}^2\,x^2\right )-x^2\,\left (\frac {32\,{\mathrm {e}}^2}{3}-1\right )+x^4\,\left (\frac {32\,{\mathrm {e}}^4}{3}+80\right )-\frac {135\,x^3\,{\mathrm {e}}^2}{4}-108\,x^6\,{\mathrm {e}}^2-\frac {-\frac {x\,\left (-625\,x^4-256\,x^3+81\,{\mathrm {e}}^2\,x^2+16\,{\mathrm {e}}^2\,x\right )\,{\ln \relax (x)}^3}{12}-\frac {x\,\left (-1375\,x^4-608\,x^3+216\,{\mathrm {e}}^2\,x^2+52\,{\mathrm {e}}^2\,x\right )\,{\ln \relax (x)}^2}{6}+\frac {x\,\left (128\,x^3\,{\mathrm {e}}^4-675\,x^2\,{\mathrm {e}}^2-184\,x\,{\mathrm {e}}^2-1296\,x^5\,{\mathrm {e}}^2+1760\,x^3+3775\,x^4+2048\,x^7\right )\,\ln \relax (x)}{12}+\frac {x\,\left (48\,x^3\,{\mathrm {e}}^4-153\,x^2\,{\mathrm {e}}^2-42\,x\,{\mathrm {e}}^2-540\,x^5\,{\mathrm {e}}^2+388\,x^3+810\,x^4+896\,x^7\right )}{6}}{\ln \relax (x)+1}-{\ln \relax (x)}^2\,\left (-\frac {625\,x^5}{12}-\frac {64\,x^4}{3}+\frac {27\,{\mathrm {e}}^2\,x^3}{4}+\frac {4\,{\mathrm {e}}^2\,x^2}{3}\right )-\frac {-\frac {x\,\left (-5\,x^4-4\,x^3+3\,{\mathrm {e}}^2\,x^2+2\,{\mathrm {e}}^2\,x\right )\,{\ln \relax (x)}^3}{2}-\frac {x\,\left (-13\,x^4-10\,x^3+7\,{\mathrm {e}}^2\,x^2+4\,{\mathrm {e}}^2\,x\right )\,{\ln \relax (x)}^2}{2}+\frac {x\,\left (2\,x^3\,{\mathrm {e}}^4-5\,x^2\,{\mathrm {e}}^2-2\,x\,{\mathrm {e}}^2-6\,x^5\,{\mathrm {e}}^2+8\,x^3+11\,x^4+4\,x^7\right )\,\ln \relax (x)}{2}+\frac {x\,\left (2\,x^7-2\,{\mathrm {e}}^2\,x^5+3\,x^4+2\,x^3-{\mathrm {e}}^2\,x^2\right )}{2}}{{\ln \relax (x)}^4+4\,{\ln \relax (x)}^3+6\,{\ln \relax (x)}^2+4\,\ln \relax (x)+1}+\frac {1925\,x^5}{12}+\frac {512\,x^8}{3}-\frac {-\frac {x\,\left (-25\,x^4-16\,x^3+9\,{\mathrm {e}}^2\,x^2+4\,{\mathrm {e}}^2\,x\right )\,{\ln \relax (x)}^3}{6}-\frac {x\,\left (-40\,x^4-26\,x^3+15\,{\mathrm {e}}^2\,x^2+7\,{\mathrm {e}}^2\,x\right )\,{\ln \relax (x)}^2}{3}+\frac {x\,\left (8\,x^3\,{\mathrm {e}}^4-29\,x^2\,{\mathrm {e}}^2-12\,x\,{\mathrm {e}}^2-36\,x^5\,{\mathrm {e}}^2+52\,x^3+81\,x^4+32\,x^7\right )\,\ln \relax (x)}{6}+\frac {x\,\left (x^3\,{\mathrm {e}}^4-4\,x^2\,{\mathrm {e}}^2-x\,{\mathrm {e}}^2-9\,x^5\,{\mathrm {e}}^2+8\,x^3+13\,x^4+10\,x^7\right )}{3}}{{\ln \relax (x)}^3+3\,{\ln \relax (x)}^2+3\,\ln \relax (x)+1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.60, size = 144, normalized size = 4.00 \begin {gather*} x^{2} + 2 x + \frac {x^{8} - 2 x^{6} e^{2} + 2 x^{5} + 2 x^{4} + x^{4} e^{4} - 2 x^{3} e^{2} - 2 x^{2} e^{2} + \left (2 x^{5} + 2 x^{4} - 2 x^{3} e^{2} - 2 x^{2} e^{2}\right ) \log {\relax (x )}^{2} + \left (4 x^{5} + 4 x^{4} - 4 x^{3} e^{2} - 4 x^{2} e^{2}\right ) \log {\relax (x )}}{\log {\relax (x )}^{4} + 4 \log {\relax (x )}^{3} + 6 \log {\relax (x )}^{2} + 4 \log {\relax (x )} + 1} - \frac {5}{x - 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________