Optimal. Leaf size=24 \[ x (2+2 x) \left (7-x+\frac {2}{3} e^5 x^2 \log (5)\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.01, antiderivative size = 38, normalized size of antiderivative = 1.58, number of steps used = 3, number of rules used = 1, integrand size = 31, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.032, Rules used = {12} \begin {gather*} \frac {4}{3} e^5 x^4 \log (5)-2 x^3+\frac {4}{3} e^5 x^3 \log (5)+12 x^2+14 x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{3} \int \left (42+72 x-18 x^2+e^5 \left (12 x^2+16 x^3\right ) \log (5)\right ) \, dx\\ &=14 x+12 x^2-2 x^3+\frac {1}{3} \left (e^5 \log (5)\right ) \int \left (12 x^2+16 x^3\right ) \, dx\\ &=14 x+12 x^2-2 x^3+\frac {4}{3} e^5 x^3 \log (5)+\frac {4}{3} e^5 x^4 \log (5)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.00, size = 38, normalized size = 1.58 \begin {gather*} 14 x+12 x^2-2 x^3+\frac {4}{3} e^5 x^3 \log (5)+\frac {4}{3} e^5 x^4 \log (5) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.52, size = 27, normalized size = 1.12 \begin {gather*} -2 \, x^{3} + \frac {4}{3} \, {\left (x^{4} + x^{3}\right )} e^{5} \log \relax (5) + 12 \, x^{2} + 14 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.13, size = 27, normalized size = 1.12 \begin {gather*} -2 \, x^{3} + \frac {4}{3} \, {\left (x^{4} + x^{3}\right )} e^{5} \log \relax (5) + 12 \, x^{2} + 14 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 31, normalized size = 1.29
method | result | size |
norman | \(\left (\frac {4 \,{\mathrm e}^{5} \ln \relax (5)}{3}-2\right ) x^{3}+14 x +12 x^{2}+\frac {4 x^{4} {\mathrm e}^{5} \ln \relax (5)}{3}\) | \(31\) |
gosper | \(\frac {2 x \left (2 \,{\mathrm e}^{5} \ln \relax (5) x^{3}+2 x^{2} {\mathrm e}^{5} \ln \relax (5)-3 x^{2}+18 x +21\right )}{3}\) | \(32\) |
default | \(\frac {{\mathrm e}^{5} \ln \relax (5) \left (4 x^{4}+4 x^{3}\right )}{3}-2 x^{3}+12 x^{2}+14 x\) | \(32\) |
risch | \(\frac {4 x^{4} {\mathrm e}^{5} \ln \relax (5)}{3}+\frac {4 \,{\mathrm e}^{5} \ln \relax (5) x^{3}}{3}-2 x^{3}+12 x^{2}+14 x\) | \(33\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.37, size = 27, normalized size = 1.12 \begin {gather*} -2 \, x^{3} + \frac {4}{3} \, {\left (x^{4} + x^{3}\right )} e^{5} \log \relax (5) + 12 \, x^{2} + 14 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.29, size = 30, normalized size = 1.25 \begin {gather*} \frac {4\,{\mathrm {e}}^5\,\ln \relax (5)\,x^4}{3}+\left (\frac {4\,{\mathrm {e}}^5\,\ln \relax (5)}{3}-2\right )\,x^3+12\,x^2+14\,x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.06, size = 36, normalized size = 1.50 \begin {gather*} \frac {4 x^{4} e^{5} \log {\relax (5 )}}{3} + x^{3} \left (-2 + \frac {4 e^{5} \log {\relax (5 )}}{3}\right ) + 12 x^{2} + 14 x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________