Optimal. Leaf size=20 \[ 3-e^{e^{\frac {2 x}{-6+\frac {2}{x}}}} \]
________________________________________________________________________________________
Rubi [F] time = 1.06, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{e^{-\frac {2 x^2}{-2+6 x}}-\frac {2 x^2}{-2+6 x}} \left (-2 x+3 x^2\right )}{1-6 x+9 x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{e^{-\frac {2 x^2}{-2+6 x}}-\frac {2 x^2}{-2+6 x}} \left (-2 x+3 x^2\right )}{(-1+3 x)^2} \, dx\\ &=\int \frac {e^{e^{-\frac {2 x^2}{-2+6 x}}-\frac {2 x^2}{-2+6 x}} x (-2+3 x)}{(-1+3 x)^2} \, dx\\ &=\int \left (\frac {1}{3} e^{e^{-\frac {2 x^2}{-2+6 x}}-\frac {2 x^2}{-2+6 x}}-\frac {e^{e^{-\frac {2 x^2}{-2+6 x}}-\frac {2 x^2}{-2+6 x}}}{3 (-1+3 x)^2}\right ) \, dx\\ &=\frac {1}{3} \int e^{e^{-\frac {2 x^2}{-2+6 x}}-\frac {2 x^2}{-2+6 x}} \, dx-\frac {1}{3} \int \frac {e^{e^{-\frac {2 x^2}{-2+6 x}}-\frac {2 x^2}{-2+6 x}}}{(-1+3 x)^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.19, size = 17, normalized size = 0.85 \begin {gather*} -e^{e^{\frac {x^2}{1-3 x}}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.74, size = 48, normalized size = 2.40 \begin {gather*} -e^{\left (\frac {x^{2}}{3 \, x - 1} - \frac {x^{2} - {\left (3 \, x - 1\right )} e^{\left (-\frac {x^{2}}{3 \, x - 1}\right )}}{3 \, x - 1}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left (3 \, x^{2} - 2 \, x\right )} e^{\left (-\frac {x^{2}}{3 \, x - 1} + e^{\left (-\frac {x^{2}}{3 \, x - 1}\right )}\right )}}{9 \, x^{2} - 6 \, x + 1}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.11, size = 17, normalized size = 0.85
method | result | size |
risch | \(-{\mathrm e}^{{\mathrm e}^{-\frac {x^{2}}{3 x -1}}}\) | \(17\) |
norman | \(\frac {-3 x \,{\mathrm e}^{{\mathrm e}^{-\frac {2 x^{2}}{6 x -2}}}+{\mathrm e}^{{\mathrm e}^{-\frac {2 x^{2}}{6 x -2}}}}{3 x -1}\) | \(45\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.65, size = 18, normalized size = 0.90 \begin {gather*} -e^{\left (e^{\left (-\frac {1}{3} \, x - \frac {1}{9 \, {\left (3 \, x - 1\right )}} - \frac {1}{9}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.44, size = 16, normalized size = 0.80 \begin {gather*} -{\mathrm {e}}^{{\mathrm {e}}^{-\frac {2\,x^2}{6\,x-2}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.35, size = 15, normalized size = 0.75 \begin {gather*} - e^{e^{- \frac {2 x^{2}}{6 x - 2}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________