Optimal. Leaf size=23 \[ x+\frac {3 (-16+x) x^2 \left (4+\frac {x}{\log (x)}\right )}{4+x} \]
________________________________________________________________________________________
Rubi [F] time = 0.37, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {192 x^2+36 x^3-3 x^4+\left (-576 x^2-48 x^3+9 x^4\right ) \log (x)+\left (16-1528 x-47 x^2+24 x^3\right ) \log ^2(x)}{\left (16+8 x+x^2\right ) \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {192 x^2+36 x^3-3 x^4+\left (-576 x^2-48 x^3+9 x^4\right ) \log (x)+\left (16-1528 x-47 x^2+24 x^3\right ) \log ^2(x)}{(4+x)^2 \log ^2(x)} \, dx\\ &=\int \left (\frac {16-1528 x-47 x^2+24 x^3}{(4+x)^2}-\frac {3 (-16+x) x^2}{(4+x) \log ^2(x)}+\frac {3 x^2 \left (-192-16 x+3 x^2\right )}{(4+x)^2 \log (x)}\right ) \, dx\\ &=-\left (3 \int \frac {(-16+x) x^2}{(4+x) \log ^2(x)} \, dx\right )+3 \int \frac {x^2 \left (-192-16 x+3 x^2\right )}{(4+x)^2 \log (x)} \, dx+\int \frac {16-1528 x-47 x^2+24 x^3}{(4+x)^2} \, dx\\ &=-\left (3 \int \frac {(-16+x) x^2}{(4+x) \log ^2(x)} \, dx\right )+3 \int \frac {x^2 \left (-192-16 x+3 x^2\right )}{(4+x)^2 \log (x)} \, dx+\int \left (-239+24 x+\frac {3840}{(4+x)^2}\right ) \, dx\\ &=-239 x+12 x^2-\frac {3840}{4+x}-3 \int \frac {(-16+x) x^2}{(4+x) \log ^2(x)} \, dx+3 \int \frac {x^2 \left (-192-16 x+3 x^2\right )}{(4+x)^2 \log (x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.17, size = 33, normalized size = 1.43 \begin {gather*} -239 x+12 x^2-\frac {3840}{4+x}+\frac {3 (-16+x) x^3}{(4+x) \log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.62, size = 39, normalized size = 1.70 \begin {gather*} \frac {3 \, x^{4} - 48 \, x^{3} + {\left (12 \, x^{3} - 191 \, x^{2} - 956 \, x - 3840\right )} \log \relax (x)}{{\left (x + 4\right )} \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.12, size = 38, normalized size = 1.65 \begin {gather*} 12 \, x^{2} - 239 \, x + \frac {3 \, {\left (x^{4} - 16 \, x^{3}\right )}}{x \log \relax (x) + 4 \, \log \relax (x)} - \frac {3840}{x + 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 40, normalized size = 1.74
method | result | size |
norman | \(\frac {-16 \ln \relax (x )-48 x^{3}+3 x^{4}-191 x^{2} \ln \relax (x )+12 x^{3} \ln \relax (x )}{\left (4+x \right ) \ln \relax (x )}\) | \(40\) |
risch | \(\frac {12 x^{3}-191 x^{2}-956 x -3840}{4+x}+\frac {3 x^{3} \left (x -16\right )}{\left (4+x \right ) \ln \relax (x )}\) | \(40\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.41, size = 39, normalized size = 1.70 \begin {gather*} \frac {3 \, x^{4} - 48 \, x^{3} + {\left (12 \, x^{3} - 191 \, x^{2} - 956 \, x - 3840\right )} \log \relax (x)}{{\left (x + 4\right )} \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.62, size = 41, normalized size = 1.78 \begin {gather*} \frac {x\,\left (12\,x^2-191\,x+4\right )}{x+4}-\frac {x\,\left (48\,x^2-3\,x^3\right )}{\ln \relax (x)\,\left (x+4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.15, size = 29, normalized size = 1.26 \begin {gather*} 12 x^{2} - 239 x + \frac {3 x^{4} - 48 x^{3}}{\left (x + 4\right ) \log {\relax (x )}} - \frac {3840}{x + 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________