Optimal. Leaf size=25 \[ \frac {-7+\log \left (\frac {x^4}{16}\right )}{-x+\log ^2\left (-5+e^5\right )} \]
________________________________________________________________________________________
Rubi [B] time = 0.22, antiderivative size = 62, normalized size of antiderivative = 2.48, number of steps used = 8, number of rules used = 6, integrand size = 54, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.111, Rules used = {1594, 27, 6742, 77, 2314, 31} \begin {gather*} -\frac {x \log \left (\frac {x^4}{16}\right )}{\log ^2\left (e^5-5\right ) \left (x-\log ^2\left (e^5-5\right )\right )}+\frac {4 \log (x)}{\log ^2\left (e^5-5\right )}+\frac {7}{x-\log ^2\left (e^5-5\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 27
Rule 31
Rule 77
Rule 1594
Rule 2314
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-11 x+4 \log ^2\left (-5+e^5\right )+x \log \left (\frac {x^4}{16}\right )}{x \left (x^2-2 x \log ^2\left (-5+e^5\right )+\log ^4\left (-5+e^5\right )\right )} \, dx\\ &=\int \frac {-11 x+4 \log ^2\left (-5+e^5\right )+x \log \left (\frac {x^4}{16}\right )}{x \left (x-\log ^2\left (-5+e^5\right )\right )^2} \, dx\\ &=\int \left (\frac {-11 x+4 \log ^2\left (-5+e^5\right )}{x \left (x-\log ^2\left (-5+e^5\right )\right )^2}+\frac {\log \left (\frac {x^4}{16}\right )}{\left (x-\log ^2\left (-5+e^5\right )\right )^2}\right ) \, dx\\ &=\int \frac {-11 x+4 \log ^2\left (-5+e^5\right )}{x \left (x-\log ^2\left (-5+e^5\right )\right )^2} \, dx+\int \frac {\log \left (\frac {x^4}{16}\right )}{\left (x-\log ^2\left (-5+e^5\right )\right )^2} \, dx\\ &=-\frac {x \log \left (\frac {x^4}{16}\right )}{\log ^2\left (-5+e^5\right ) \left (x-\log ^2\left (-5+e^5\right )\right )}+\frac {4 \int \frac {1}{x-\log ^2\left (-5+e^5\right )} \, dx}{\log ^2\left (-5+e^5\right )}+\int \left (\frac {4}{x \log ^2\left (-5+e^5\right )}-\frac {7}{\left (x-\log ^2\left (-5+e^5\right )\right )^2}-\frac {4}{\log ^2\left (-5+e^5\right ) \left (x-\log ^2\left (-5+e^5\right )\right )}\right ) \, dx\\ &=\frac {7}{x-\log ^2\left (-5+e^5\right )}+\frac {4 \log (x)}{\log ^2\left (-5+e^5\right )}-\frac {x \log \left (\frac {x^4}{16}\right )}{\log ^2\left (-5+e^5\right ) \left (x-\log ^2\left (-5+e^5\right )\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 25, normalized size = 1.00 \begin {gather*} \frac {7+\log (16)-\log \left (x^4\right )}{x-\log ^2\left (-5+e^5\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.64, size = 22, normalized size = 0.88 \begin {gather*} \frac {\log \left (\frac {1}{16} \, x^{4}\right ) - 7}{\log \left (e^{5} - 5\right )^{2} - x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 1.20, size = 27, normalized size = 1.08 \begin {gather*} -\frac {4 \, \log \relax (2) - \log \left (x^{4}\right ) + 7}{\log \left (e^{5} - 5\right )^{2} - x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.11, size = 23, normalized size = 0.92
method | result | size |
norman | \(\frac {-7+\ln \left (\frac {x^{4}}{16}\right )}{\ln \left ({\mathrm e}^{5}-5\right )^{2}-x}\) | \(23\) |
risch | \(\frac {\ln \left (\frac {x^{4}}{16}\right )}{\ln \left ({\mathrm e}^{5}-5\right )^{2}-x}-\frac {7}{\ln \left ({\mathrm e}^{5}-5\right )^{2}-x}\) | \(37\) |
default | \(\frac {x \ln \left (x^{4}\right )}{\ln \left ({\mathrm e}^{5}-5\right )^{2} \left (\ln \left ({\mathrm e}^{5}-5\right )^{2}-x \right )}+\frac {4 \ln \left (\ln \left ({\mathrm e}^{5}-5\right )^{2}-x \right )}{\ln \left ({\mathrm e}^{5}-5\right )^{2}}+\frac {7}{-\ln \left ({\mathrm e}^{5}-5\right )^{2}+x}-\frac {4 \ln \left (-\ln \left ({\mathrm e}^{5}-5\right )^{2}+x \right )}{\ln \left ({\mathrm e}^{5}-5\right )^{2}}+\frac {4 \ln \relax (x )}{\ln \left ({\mathrm e}^{5}-5\right )^{2}}+\frac {4 \ln \relax (2)}{-\ln \left ({\mathrm e}^{5}-5\right )^{2}+x}\) | \(113\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.37, size = 129, normalized size = 5.16 \begin {gather*} 4 \, {\left (\frac {1}{\log \left (e^{5} - 5\right )^{4} - x \log \left (e^{5} - 5\right )^{2}} - \frac {\log \left (-\log \left (e^{5} - 5\right )^{2} + x\right )}{\log \left (e^{5} - 5\right )^{4}} + \frac {\log \relax (x)}{\log \left (e^{5} - 5\right )^{4}}\right )} \log \left (e^{5} - 5\right )^{2} + \frac {\log \left (\frac {1}{16} \, x^{4}\right )}{\log \left (e^{5} - 5\right )^{2} - x} - \frac {11}{\log \left (e^{5} - 5\right )^{2} - x} + \frac {4 \, \log \left (-\log \left (e^{5} - 5\right )^{2} + x\right )}{\log \left (e^{5} - 5\right )^{2}} - \frac {4 \, \log \relax (x)}{\log \left (e^{5} - 5\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.44, size = 23, normalized size = 0.92 \begin {gather*} -\frac {\ln \left (\frac {x^4}{16}\right )-7}{x-{\ln \left ({\mathrm {e}}^5-5\right )}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.22, size = 27, normalized size = 1.08 \begin {gather*} - \frac {\log {\left (\frac {x^{4}}{16} \right )}}{x - \log {\left (-5 + e^{5} \right )}^{2}} + \frac {7}{x - \log {\left (-5 + e^{5} \right )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________