Optimal. Leaf size=22 \[ \frac {9 x}{4}+\frac {\left (3+x+x^2\right ) \log (5)}{e^3}+\log (3+x) \]
________________________________________________________________________________________
Rubi [A] time = 0.03, antiderivative size = 33, normalized size of antiderivative = 1.50, number of steps used = 3, number of rules used = 2, integrand size = 34, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.059, Rules used = {12, 1850} \begin {gather*} \frac {x^2 \log (25)}{2 e^3}+\frac {x \left (9 e^3+\log (625)\right )}{4 e^3}+\log (x+3) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 1850
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {e^3 (31+9 x)+\left (12+28 x+8 x^2\right ) \log (5)}{12+4 x} \, dx}{e^3}\\ &=\frac {\int \left (\frac {e^3}{3+x}+x \log (25)+\frac {1}{4} \left (9 e^3+\log (625)\right )\right ) \, dx}{e^3}\\ &=\frac {x^2 \log (25)}{2 e^3}+\frac {x \left (9 e^3+\log (625)\right )}{4 e^3}+\log (3+x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 34, normalized size = 1.55 \begin {gather*} \frac {(3+x) \left (9 e^3+4 (-2+x) \log (5)\right )+4 e^3 \log (3+x)}{4 e^3} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.51, size = 27, normalized size = 1.23 \begin {gather*} \frac {1}{4} \, {\left (9 \, x e^{3} + 4 \, {\left (x^{2} + x\right )} \log \relax (5) + 4 \, e^{3} \log \left (x + 3\right )\right )} e^{\left (-3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 31, normalized size = 1.41 \begin {gather*} \frac {1}{4} \, {\left (4 \, x^{2} \log \relax (5) + 9 \, x e^{3} + 4 \, x \log \relax (5) + 4 \, e^{3} \log \left ({\left | x + 3 \right |}\right )\right )} e^{\left (-3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 23, normalized size = 1.05
method | result | size |
risch | \({\mathrm e}^{-3} \ln \relax (5) x^{2}+\frac {9 x}{4}+{\mathrm e}^{-3} x \ln \relax (5)+\ln \left (3+x \right )\) | \(23\) |
norman | \({\mathrm e}^{-3} \ln \relax (5) x^{2}+\frac {\left (9 \,{\mathrm e}^{3}+4 \ln \relax (5)\right ) {\mathrm e}^{-3} x}{4}+\ln \left (3+x \right )\) | \(32\) |
default | \(\frac {{\mathrm e}^{-3} \left (4 x^{2} \ln \relax (5)+9 x \,{\mathrm e}^{3}+4 x \ln \relax (5)+4 \,{\mathrm e}^{3} \ln \left (3+x \right )\right )}{4}\) | \(33\) |
meijerg | \(18 \,{\mathrm e}^{-3} \ln \relax (5) \left (-\frac {x \left (-x +6\right )}{18}+\ln \left (1+\frac {x}{3}\right )\right )+9 \left (\frac {3 \,{\mathrm e}^{3}}{4}+\frac {7 \ln \relax (5)}{3}\right ) {\mathrm e}^{-3} \left (\frac {x}{3}-\ln \left (1+\frac {x}{3}\right )\right )+\frac {31 \ln \left (1+\frac {x}{3}\right )}{4}+3 \,{\mathrm e}^{-3} \ln \relax (5) \ln \left (1+\frac {x}{3}\right )\) | \(68\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.38, size = 31, normalized size = 1.41 \begin {gather*} \frac {1}{4} \, {\left (4 \, x^{2} \log \relax (5) + x {\left (9 \, e^{3} + 4 \, \log \relax (5)\right )} + 4 \, e^{3} \log \left (x + 3\right )\right )} e^{\left (-3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.08, size = 22, normalized size = 1.00 \begin {gather*} \frac {9\,x}{4}+\ln \left (x+3\right )+x^2\,{\mathrm {e}}^{-3}\,\ln \relax (5)+x\,{\mathrm {e}}^{-3}\,\ln \relax (5) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.15, size = 26, normalized size = 1.18 \begin {gather*} \frac {x^{2} \log {\relax (5 )}}{e^{3}} + x \left (\frac {\log {\relax (5 )}}{e^{3}} + \frac {9}{4}\right ) + \log {\left (x + 3 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________