Optimal. Leaf size=20 \[ x+\log \left (-1+e^{-x+\frac {e x}{25}}+6 x\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.62, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {125+e^{1+\frac {1}{25} (-25 x+e x)}+150 x}{-25+25 e^{\frac {1}{25} (-25 x+e x)}+150 x} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-125-e^{1+\frac {1}{25} (-25 x+e x)}-150 x}{25 \left (1-e^{\frac {1}{25} (-25+e) x}-6 x\right )} \, dx\\ &=\frac {1}{25} \int \frac {-125-e^{1+\frac {1}{25} (-25 x+e x)}-150 x}{1-e^{\frac {1}{25} (-25+e) x}-6 x} \, dx\\ &=\operatorname {Subst}\left (\int \frac {-125-e^{1+(-25+e) x}-3750 x}{1-e^{(-25+e) x}-150 x} \, dx,x,\frac {x}{25}\right )\\ &=\operatorname {Subst}\left (\int \left (e+\frac {-125-e-150 (25-e) x}{1-e^{(-25+e) x}-150 x}\right ) \, dx,x,\frac {x}{25}\right )\\ &=\frac {e x}{25}+\operatorname {Subst}\left (\int \frac {-125-e-150 (25-e) x}{1-e^{(-25+e) x}-150 x} \, dx,x,\frac {x}{25}\right )\\ &=\frac {e x}{25}+\operatorname {Subst}\left (\int \left (\frac {125 \left (1+\frac {e}{125}\right )}{-1+e^{(-25+e) x}+150 x}-\frac {150 (-25+e) x}{-1+e^{(-25+e) x}+150 x}\right ) \, dx,x,\frac {x}{25}\right )\\ &=\frac {e x}{25}+(150 (25-e)) \operatorname {Subst}\left (\int \frac {x}{-1+e^{(-25+e) x}+150 x} \, dx,x,\frac {x}{25}\right )+(125+e) \operatorname {Subst}\left (\int \frac {1}{-1+e^{(-25+e) x}+150 x} \, dx,x,\frac {x}{25}\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.30, size = 21, normalized size = 1.05 \begin {gather*} \log \left (-e^x+e^{\frac {e x}{25}}+6 e^x x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.65, size = 23, normalized size = 1.15 \begin {gather*} x + \log \left ({\left (6 \, x - 1\right )} e + e^{\left (\frac {1}{25} \, x e - x + 1\right )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 18, normalized size = 0.90 \begin {gather*} x + \log \left (6 \, x + e^{\left (\frac {1}{25} \, x e - x\right )} - 1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 17, normalized size = 0.85
method | result | size |
risch | \(x +\ln \left (-1+6 x +{\mathrm e}^{\frac {x \left ({\mathrm e}-25\right )}{25}}\right )\) | \(17\) |
norman | \(x +\ln \left (25 \,{\mathrm e}^{\frac {x \,{\mathrm e}}{25}-x}+150 x -25\right )\) | \(21\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.42, size = 16, normalized size = 0.80 \begin {gather*} \log \left ({\left (6 \, x - 1\right )} e^{x} + e^{\left (\frac {1}{25} \, x e\right )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.18, size = 16, normalized size = 0.80 \begin {gather*} x+\ln \left (x+\frac {{\mathrm {e}}^{\frac {x\,\left (\mathrm {e}-25\right )}{25}}}{6}-\frac {1}{6}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.15, size = 29, normalized size = 1.45 \begin {gather*} x \left (\frac {1}{25} + \frac {24 e}{625}\right ) + \frac {\log {\left (6 x + e^{- x + \frac {e x}{25}} - 1 \right )}}{25} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________