Optimal. Leaf size=28 \[ 4 \left (x-\frac {\left (e^{e^{e^{-x} x}}-x\right ) x^3}{\log (9)}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 1.77, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{-x} \left (e^{e^{e^{-x} x}} \left (-12 e^x x^2+e^{e^{-x} x} \left (-4 x^3+4 x^4\right )\right )+e^x \left (16 x^3+4 \log (9)\right )\right )}{\log (9)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int e^{-x} \left (e^{e^{e^{-x} x}} \left (-12 e^x x^2+e^{e^{-x} x} \left (-4 x^3+4 x^4\right )\right )+e^x \left (16 x^3+4 \log (9)\right )\right ) \, dx}{\log (9)}\\ &=\frac {\int \left (4 e^{e^{e^{-x} x}-x} x^2 \left (-3 e^x-e^{e^{-x} x} x+e^{e^{-x} x} x^2\right )+4 \left (4 x^3+\log (9)\right )\right ) \, dx}{\log (9)}\\ &=\frac {4 \int e^{e^{e^{-x} x}-x} x^2 \left (-3 e^x-e^{e^{-x} x} x+e^{e^{-x} x} x^2\right ) \, dx}{\log (9)}+\frac {4 \int \left (4 x^3+\log (9)\right ) \, dx}{\log (9)}\\ &=4 x+\frac {4 x^4}{\log (9)}+\frac {4 \int e^{e^{e^{-x} x}-x} x^2 \left (-3 e^x+e^{e^{-x} x} (-1+x) x\right ) \, dx}{\log (9)}\\ &=4 x+\frac {4 x^4}{\log (9)}+\frac {4 \int \left (-3 e^{e^{e^{-x} x}} x^2+e^{e^{e^{-x} x}-x+e^{-x} x} (-1+x) x^3\right ) \, dx}{\log (9)}\\ &=4 x+\frac {4 x^4}{\log (9)}+\frac {4 \int e^{e^{e^{-x} x}-x+e^{-x} x} (-1+x) x^3 \, dx}{\log (9)}-\frac {12 \int e^{e^{e^{-x} x}} x^2 \, dx}{\log (9)}\\ &=4 x+\frac {4 x^4}{\log (9)}+\frac {4 \int \left (-e^{e^{e^{-x} x}-x+e^{-x} x} x^3+e^{e^{e^{-x} x}-x+e^{-x} x} x^4\right ) \, dx}{\log (9)}-\frac {12 \int e^{e^{e^{-x} x}} x^2 \, dx}{\log (9)}\\ &=4 x+\frac {4 x^4}{\log (9)}-\frac {4 \int e^{e^{e^{-x} x}-x+e^{-x} x} x^3 \, dx}{\log (9)}+\frac {4 \int e^{e^{e^{-x} x}-x+e^{-x} x} x^4 \, dx}{\log (9)}-\frac {12 \int e^{e^{e^{-x} x}} x^2 \, dx}{\log (9)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.80, size = 32, normalized size = 1.14 \begin {gather*} \frac {-4 e^{e^{e^{-x} x}} x^3+4 x^4+4 x \log (9)}{\log (9)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.79, size = 28, normalized size = 1.00 \begin {gather*} \frac {2 \, {\left (x^{4} - x^{3} e^{\left (e^{\left (x e^{\left (-x\right )}\right )}\right )} + 2 \, x \log \relax (3)\right )}}{\log \relax (3)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {2 \, {\left (2 \, {\left (2 \, x^{3} + \log \relax (3)\right )} e^{x} - {\left (3 \, x^{2} e^{x} - {\left (x^{4} - x^{3}\right )} e^{\left (x e^{\left (-x\right )}\right )}\right )} e^{\left (e^{\left (x e^{\left (-x\right )}\right )}\right )}\right )} e^{\left (-x\right )}}{\log \relax (3)}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 31, normalized size = 1.11
method | result | size |
risch | \(\frac {2 x^{4}}{\ln \relax (3)}-\frac {2 x^{3} {\mathrm e}^{{\mathrm e}^{x \,{\mathrm e}^{-x}}}}{\ln \relax (3)}+4 x\) | \(31\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.41, size = 28, normalized size = 1.00 \begin {gather*} \frac {2 \, {\left (x^{4} - x^{3} e^{\left (e^{\left (x e^{\left (-x\right )}\right )}\right )} + 2 \, x \log \relax (3)\right )}}{\log \relax (3)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.41, size = 28, normalized size = 1.00 \begin {gather*} \frac {2\,x\,\left (2\,\ln \relax (3)-x^2\,{\mathrm {e}}^{{\mathrm {e}}^{x\,{\mathrm {e}}^{-x}}}+x^3\right )}{\ln \relax (3)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 3.32, size = 27, normalized size = 0.96 \begin {gather*} \frac {2 x^{4}}{\log {\relax (3 )}} - \frac {2 x^{3} e^{e^{x e^{- x}}}}{\log {\relax (3 )}} + 4 x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________