Optimal. Leaf size=14 \[ \left (-4+e^{e^{x (4+x)}}+x\right )^2 \]
________________________________________________________________________________________
Rubi [F] time = 0.22, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \left (-8+2 x+e^{2 e^{4 x+x^2}+4 x+x^2} (8+4 x)+e^{e^{4 x+x^2}} \left (2+e^{4 x+x^2} \left (-32-8 x+4 x^2\right )\right )\right ) \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=-8 x+x^2+\int e^{2 e^{4 x+x^2}+4 x+x^2} (8+4 x) \, dx+\int e^{e^{4 x+x^2}} \left (2+e^{4 x+x^2} \left (-32-8 x+4 x^2\right )\right ) \, dx\\ &=-8 x+x^2-\frac {2 e^{e^{4 x+x^2}} \left (8+2 x-x^2\right )}{2+x}+\int \left (8 e^{2 e^{4 x+x^2}+4 x+x^2}+4 e^{2 e^{4 x+x^2}+4 x+x^2} x\right ) \, dx\\ &=-8 x+x^2-\frac {2 e^{e^{4 x+x^2}} \left (8+2 x-x^2\right )}{2+x}+4 \int e^{2 e^{4 x+x^2}+4 x+x^2} x \, dx+8 \int e^{2 e^{4 x+x^2}+4 x+x^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 14, normalized size = 1.00 \begin {gather*} \left (-4+e^{e^{x (4+x)}}+x\right )^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.75, size = 32, normalized size = 2.29 \begin {gather*} x^{2} + 2 \, {\left (x - 4\right )} e^{\left (e^{\left (x^{2} + 4 \, x\right )}\right )} - 8 \, x + e^{\left (2 \, e^{\left (x^{2} + 4 \, x\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.20, size = 67, normalized size = 4.79 \begin {gather*} x^{2} + 2 \, {\left (x e^{\left (x^{2} + 4 \, x + e^{\left (x^{2} + 4 \, x\right )}\right )} - 4 \, e^{\left (x^{2} + 4 \, x + e^{\left (x^{2} + 4 \, x\right )}\right )}\right )} e^{\left (-x^{2} - 4 \, x\right )} - 8 \, x + e^{\left (2 \, e^{\left (x^{2} + 4 \, x\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.08, size = 30, normalized size = 2.14
method | result | size |
risch | \({\mathrm e}^{2 \,{\mathrm e}^{\left (4+x \right ) x}}+\left (2 x -8\right ) {\mathrm e}^{{\mathrm e}^{\left (4+x \right ) x}}+x^{2}-8 x\) | \(30\) |
default | \(-8 x +2 x \,{\mathrm e}^{{\mathrm e}^{x^{2}+4 x}}-8 \,{\mathrm e}^{{\mathrm e}^{x^{2}+4 x}}+{\mathrm e}^{2 \,{\mathrm e}^{x^{2}+4 x}}+x^{2}\) | \(42\) |
norman | \(-8 x +2 x \,{\mathrm e}^{{\mathrm e}^{x^{2}+4 x}}-8 \,{\mathrm e}^{{\mathrm e}^{x^{2}+4 x}}+{\mathrm e}^{2 \,{\mathrm e}^{x^{2}+4 x}}+x^{2}\) | \(42\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.37, size = 32, normalized size = 2.29 \begin {gather*} x^{2} + 2 \, {\left (x - 4\right )} e^{\left (e^{\left (x^{2} + 4 \, x\right )}\right )} - 8 \, x + e^{\left (2 \, e^{\left (x^{2} + 4 \, x\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.53, size = 43, normalized size = 3.07 \begin {gather*} {\mathrm {e}}^{2\,{\mathrm {e}}^{4\,x}\,{\mathrm {e}}^{x^2}}-8\,{\mathrm {e}}^{{\mathrm {e}}^{4\,x}\,{\mathrm {e}}^{x^2}}-8\,x+2\,x\,{\mathrm {e}}^{{\mathrm {e}}^{4\,x}\,{\mathrm {e}}^{x^2}}+x^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 8.35, size = 32, normalized size = 2.29 \begin {gather*} x^{2} - 8 x + \left (2 x - 8\right ) e^{e^{x^{2} + 4 x}} + e^{2 e^{x^{2} + 4 x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________