Optimal. Leaf size=20 \[ 5 \log \left (\frac {1}{2} \left (-e^4-2 x+\log \left (\frac {4}{3}\right )\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.00, antiderivative size = 16, normalized size of antiderivative = 0.80, number of steps used = 2, number of rules used = 2, integrand size = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.118, Rules used = {12, 31} \begin {gather*} 5 \log \left (2 x+e^4-\log \left (\frac {4}{3}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 31
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=10 \int \frac {1}{e^4+2 x-\log \left (\frac {4}{3}\right )} \, dx\\ &=5 \log \left (e^4+2 x-\log \left (\frac {4}{3}\right )\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.00, size = 16, normalized size = 0.80 \begin {gather*} 5 \log \left (e^4+2 x-\log \left (\frac {4}{3}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.51, size = 11, normalized size = 0.55 \begin {gather*} 5 \, \log \left (2 \, x + e^{4} + \log \left (\frac {3}{4}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.18, size = 12, normalized size = 0.60 \begin {gather*} 5 \, \log \left ({\left | 2 \, x + e^{4} + \log \left (\frac {3}{4}\right ) \right |}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.09, size = 12, normalized size = 0.60
method | result | size |
default | \(5 \ln \left (\ln \left (\frac {3}{4}\right )+2 x +{\mathrm e}^{4}\right )\) | \(12\) |
norman | \(5 \ln \left (\ln \left (\frac {3}{4}\right )+2 x +{\mathrm e}^{4}\right )\) | \(12\) |
risch | \(5 \ln \left (\ln \relax (3)-2 \ln \relax (2)+2 x +{\mathrm e}^{4}\right )\) | \(16\) |
meijerg | \(\frac {10 \left (\frac {\ln \left (\frac {3}{4}\right )}{2}+\frac {{\mathrm e}^{4}}{2}\right ) \ln \left (1+\frac {2 x}{\ln \left (\frac {3}{4}\right )+{\mathrm e}^{4}}\right )}{\ln \left (\frac {3}{4}\right )+{\mathrm e}^{4}}\) | \(32\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.37, size = 11, normalized size = 0.55 \begin {gather*} 5 \, \log \left (2 \, x + e^{4} + \log \left (\frac {3}{4}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.22, size = 11, normalized size = 0.55 \begin {gather*} 5\,\ln \left (2\,x+{\mathrm {e}}^4+\ln \left (\frac {3}{4}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.07, size = 17, normalized size = 0.85 \begin {gather*} 5 \log {\left (2 x - 2 \log {\relax (2 )} + \log {\relax (3 )} + e^{4} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________