Optimal. Leaf size=24 \[ 2 x-\frac {e^{12-2 x}}{(4+2 x)^2}-\log (x) \]
________________________________________________________________________________________
Rubi [A] time = 0.36, antiderivative size = 24, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 44, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.068, Rules used = {1593, 6688, 2197} \begin {gather*} 2 x-\frac {e^{12-2 x}}{4 (x+2)^2}-\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 1593
Rule 2197
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-2+3 x+2 x^2+\frac {e^{12-2 x} \left (6 x+2 x^2\right )}{(4+2 x)^2}}{x (2+x)} \, dx\\ &=\int \left (2-\frac {1}{x}+\frac {e^{12-2 x} (3+x)}{2 (2+x)^3}\right ) \, dx\\ &=2 x-\log (x)+\frac {1}{2} \int \frac {e^{12-2 x} (3+x)}{(2+x)^3} \, dx\\ &=2 x-\frac {e^{12-2 x}}{4 (2+x)^2}-\log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.10, size = 45, normalized size = 1.88 \begin {gather*} 2 x-\frac {e^{12-2 x}}{2 (2+x)}+\frac {e^{12-2 x} (3+2 x)}{4 (2+x)^2}-\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.66, size = 24, normalized size = 1.00 \begin {gather*} 2 \, x - e^{\left (-2 \, x - 2 \, \log \left (2 \, x + 4\right ) + 12\right )} - \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.13, size = 50, normalized size = 2.08 \begin {gather*} \frac {8 \, x^{3} - 4 \, x^{2} \log \relax (x) + 32 \, x^{2} - 16 \, x \log \relax (x) + 32 \, x - e^{\left (-2 \, x + 12\right )} - 16 \, \log \relax (x)}{4 \, {\left (x^{2} + 4 \, x + 4\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.09, size = 22, normalized size = 0.92
method | result | size |
risch | \(2 x -\ln \relax (x )-\frac {{\mathrm e}^{-2 x +12}}{4 \left (2+x \right )^{2}}\) | \(22\) |
default | \(2 x -\ln \relax (x )-\frac {{\mathrm e}^{-2 x +12}}{\left (-2 x -4\right )^{2}}\) | \(24\) |
norman | \(2 x -\ln \relax (x )-\frac {{\mathrm e}^{-2 x +12}}{\left (2 x +4\right )^{2}}\) | \(27\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} 2 \, x - \frac {x e^{\left (-2 \, x + 12\right )}}{4 \, {\left (x^{3} + 6 \, x^{2} + 12 \, x + 8\right )}} - \frac {3 \, e^{16} E_{3}\left (2 \, x + 4\right )}{2 \, {\left (x + 2\right )}^{2}} - 2 \, \int \frac {{\left (x e^{12} - e^{12}\right )} e^{\left (-2 \, x\right )}}{4 \, {\left (x^{4} + 8 \, x^{3} + 24 \, x^{2} + 32 \, x + 16\right )}}\,{d x} - \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.11, size = 28, normalized size = 1.17 \begin {gather*} 2\,x-\ln \relax (x)-\frac {{\mathrm {e}}^{-2\,x}\,{\mathrm {e}}^{12}}{4\,x^2+16\,x+16} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.15, size = 22, normalized size = 0.92 \begin {gather*} 2 x - \log {\relax (x )} - \frac {e^{12 - 2 x}}{4 x^{2} + 16 x + 16} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________