Optimal. Leaf size=26 \[ e^{2 e^e+2 x^2-2 (5-x) \log ^4(2+x)} \]
________________________________________________________________________________________
Rubi [B] time = 0.42, antiderivative size = 95, normalized size of antiderivative = 3.65, number of steps used = 1, number of rules used = 1, integrand size = 81, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.012, Rules used = {2288} \begin {gather*} \frac {e^{2 e^e-2 (5-x) \log ^4(x+2)} \left (4 e^{2 x^2} (5-x) \log ^3(x+2)-e^{2 x^2} (x+2) \log ^4(x+2)\right )}{(x+2) \left (\frac {4 (5-x) \log ^3(x+2)}{x+2}-\log ^4(x+2)\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {e^{2 e^e-2 (5-x) \log ^4(2+x)} \left (4 e^{2 x^2} (5-x) \log ^3(2+x)-e^{2 x^2} (2+x) \log ^4(2+x)\right )}{(2+x) \left (\frac {4 (5-x) \log ^3(2+x)}{2+x}-\log ^4(2+x)\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.75, size = 21, normalized size = 0.81 \begin {gather*} e^{2 \left (e^e+x^2+(-5+x) \log ^4(2+x)\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.67, size = 23, normalized size = 0.88 \begin {gather*} e^{\left (2 \, {\left (x - 5\right )} \log \left (x + 2\right )^{4} + 2 \, x^{2} + 2 \, e^{e}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.27, size = 29, normalized size = 1.12 \begin {gather*} e^{\left (2 \, x \log \left (x + 2\right )^{4} - 10 \, \log \left (x + 2\right )^{4} + 2 \, x^{2} + 2 \, e^{e}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 30, normalized size = 1.15
method | result | size |
risch | \({\mathrm e}^{2 x^{2}+2 \ln \left (2+x \right )^{4} x -10 \ln \left (2+x \right )^{4}+2 \,{\mathrm e}^{{\mathrm e}}}\) | \(30\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.52, size = 29, normalized size = 1.12 \begin {gather*} e^{\left (2 \, x \log \left (x + 2\right )^{4} - 10 \, \log \left (x + 2\right )^{4} + 2 \, x^{2} + 2 \, e^{e}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.44, size = 32, normalized size = 1.23 \begin {gather*} {\mathrm {e}}^{-10\,{\ln \left (x+2\right )}^4}\,{\mathrm {e}}^{2\,{\mathrm {e}}^{\mathrm {e}}}\,{\mathrm {e}}^{2\,x^2}\,{\mathrm {e}}^{2\,x\,{\ln \left (x+2\right )}^4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________