Optimal. Leaf size=21 \[ -\frac {4 x \left (-1+\frac {1}{e^3}-e^x+x\right )}{x+x^2} \]
________________________________________________________________________________________
Rubi [A] time = 0.14, antiderivative size = 25, normalized size of antiderivative = 1.19, number of steps used = 7, number of rules used = 5, integrand size = 29, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.172, Rules used = {12, 27, 6741, 6742, 2197} \begin {gather*} \frac {4 e^x}{x+1}+\frac {4 \left (2-\frac {1}{e^3}\right )}{x+1} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 27
Rule 2197
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {4-8 e^3+4 e^{3+x} x}{1+2 x+x^2} \, dx}{e^3}\\ &=\frac {\int \frac {4-8 e^3+4 e^{3+x} x}{(1+x)^2} \, dx}{e^3}\\ &=\frac {\int \frac {4 \left (1-2 e^3+e^{3+x} x\right )}{(1+x)^2} \, dx}{e^3}\\ &=\frac {4 \int \frac {1-2 e^3+e^{3+x} x}{(1+x)^2} \, dx}{e^3}\\ &=\frac {4 \int \left (\frac {1-2 e^3}{(1+x)^2}+\frac {e^{3+x} x}{(1+x)^2}\right ) \, dx}{e^3}\\ &=\frac {4 \left (2-\frac {1}{e^3}\right )}{1+x}+\frac {4 \int \frac {e^{3+x} x}{(1+x)^2} \, dx}{e^3}\\ &=\frac {4 \left (2-\frac {1}{e^3}\right )}{1+x}+\frac {4 e^x}{1+x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 22, normalized size = 1.05 \begin {gather*} \frac {4 \left (-1+2 e^3+e^{3+x}\right )}{e^3 (1+x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.68, size = 19, normalized size = 0.90 \begin {gather*} \frac {4 \, {\left (2 \, e^{3} + e^{\left (x + 3\right )} - 1\right )} e^{\left (-3\right )}}{x + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 19, normalized size = 0.90 \begin {gather*} \frac {4 \, {\left (2 \, e^{3} + e^{\left (x + 3\right )} - 1\right )} e^{\left (-3\right )}}{x + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.18, size = 25, normalized size = 1.19
method | result | size |
norman | \(\frac {-4 \left (2 \,{\mathrm e}^{3}-1\right ) {\mathrm e}^{-3} x +4 \,{\mathrm e}^{x}}{x +1}\) | \(25\) |
risch | \(\frac {8 \,{\mathrm e}^{-3} {\mathrm e}^{3}}{x +1}-\frac {4 \,{\mathrm e}^{-3}}{x +1}+\frac {4 \,{\mathrm e}^{x}}{x +1}\) | \(31\) |
default | \(4 \,{\mathrm e}^{-3} \left (-\frac {1}{x +1}+\frac {{\mathrm e}^{3} {\mathrm e}^{x}}{x +1}+\frac {2 \,{\mathrm e}^{3}}{x +1}\right )\) | \(34\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.36, size = 31, normalized size = 1.48 \begin {gather*} 4 \, {\left (\frac {2 \, e^{3}}{x + 1} + \frac {e^{\left (x + 3\right )}}{x + 1} - \frac {1}{x + 1}\right )} e^{\left (-3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.35, size = 21, normalized size = 1.00 \begin {gather*} \frac {4\,{\mathrm {e}}^x+4\,{\mathrm {e}}^{-3}\,\left (2\,{\mathrm {e}}^3-1\right )}{x+1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.15, size = 22, normalized size = 1.05 \begin {gather*} - \frac {4 - 8 e^{3}}{x e^{3} + e^{3}} + \frac {4 e^{x}}{x + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________