Optimal. Leaf size=36 \[ 4 e^{2 \left (e^{3 x}-x^2\right )^2} \log ^2\left (\frac {3+x^2}{x}-\log (2)\right ) \]
________________________________________________________________________________________
Rubi [B] time = 1.02, antiderivative size = 174, normalized size of antiderivative = 4.83, number of steps used = 2, number of rules used = 2, integrand size = 166, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.012, Rules used = {1594, 2288} \begin {gather*} \frac {4 e^{2 x^4-4 e^{3 x} x^2+2 e^{6 x}} \left (2 x^6-2 x^5 \log (2)+6 x^4+3 e^{6 x} \left (x^3-x^2 \log (2)+3 x\right )-e^{3 x} \left (3 x^5+2 x^4+9 x^3+6 x^2-\left (3 x^4+2 x^3\right ) \log (2)\right )\right ) \log ^2\left (\frac {x^2-x \log (2)+3}{x}\right )}{x \left (2 x^3-3 e^{3 x} x^2-2 e^{3 x} x+3 e^{6 x}\right ) \left (x^2-x \log (2)+3\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 1594
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{2 e^{6 x}-4 e^{3 x} x^2+2 x^4} \left (\left (24-8 x^2\right ) \log \left (\frac {3+x^2-x \log (2)}{x}\right )+\left (-96 x^4-32 x^6+32 x^5 \log (2)+e^{6 x} \left (-144 x-48 x^3+48 x^2 \log (2)\right )+e^{3 x} \left (96 x^2+144 x^3+32 x^4+48 x^5+\left (-32 x^3-48 x^4\right ) \log (2)\right )\right ) \log ^2\left (\frac {3+x^2-x \log (2)}{x}\right )\right )}{x \left (-3-x^2+x \log (2)\right )} \, dx\\ &=\frac {4 e^{2 e^{6 x}-4 e^{3 x} x^2+2 x^4} \left (6 x^4+2 x^6-2 x^5 \log (2)+3 e^{6 x} \left (3 x+x^3-x^2 \log (2)\right )-e^{3 x} \left (6 x^2+9 x^3+2 x^4+3 x^5-\left (2 x^3+3 x^4\right ) \log (2)\right )\right ) \log ^2\left (\frac {3+x^2-x \log (2)}{x}\right )}{x \left (3 e^{6 x}-2 e^{3 x} x-3 e^{3 x} x^2+2 x^3\right ) \left (3+x^2-x \log (2)\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.18, size = 33, normalized size = 0.92 \begin {gather*} 4 e^{2 \left (e^{3 x}-x^2\right )^2} \log ^2\left (\frac {3}{x}+x-\log (2)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.59, size = 41, normalized size = 1.14 \begin {gather*} 4 \, e^{\left (2 \, x^{4} - 4 \, x^{2} e^{\left (3 \, x\right )} + 2 \, e^{\left (6 \, x\right )}\right )} \log \left (\frac {x^{2} - x \log \relax (2) + 3}{x}\right )^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {8 \, {\left (2 \, {\left (2 \, x^{6} - 2 \, x^{5} \log \relax (2) + 6 \, x^{4} + 3 \, {\left (x^{3} - x^{2} \log \relax (2) + 3 \, x\right )} e^{\left (6 \, x\right )} - {\left (3 \, x^{5} + 2 \, x^{4} + 9 \, x^{3} + 6 \, x^{2} - {\left (3 \, x^{4} + 2 \, x^{3}\right )} \log \relax (2)\right )} e^{\left (3 \, x\right )}\right )} \log \left (\frac {x^{2} - x \log \relax (2) + 3}{x}\right )^{2} + {\left (x^{2} - 3\right )} \log \left (\frac {x^{2} - x \log \relax (2) + 3}{x}\right )\right )} e^{\left (2 \, x^{4} - 4 \, x^{2} e^{\left (3 \, x\right )} + 2 \, e^{\left (6 \, x\right )}\right )}}{x^{3} - x^{2} \log \relax (2) + 3 \, x}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.66, size = 1142, normalized size = 31.72
method | result | size |
risch | \(\left (-4 \pi ^{2}+4 \ln \relax (x )^{2}+2 \pi ^{2} \mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (i \left (x \ln \relax (2)-x^{2}-3\right )\right )^{2} \mathrm {csgn}\left (\frac {i \left (x \ln \relax (2)-x^{2}-3\right )}{x}\right )^{3}-4 \pi ^{2} \mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (i \left (x \ln \relax (2)-x^{2}-3\right )\right ) \mathrm {csgn}\left (\frac {i \left (x \ln \relax (2)-x^{2}-3\right )}{x}\right )^{3}+8 i \ln \relax (x ) \pi \mathrm {csgn}\left (\frac {i \left (x \ln \relax (2)-x^{2}-3\right )}{x}\right )^{2}-8 i \ln \left (x \ln \relax (2)-x^{2}-3\right ) \pi \mathrm {csgn}\left (\frac {i \left (x \ln \relax (2)-x^{2}-3\right )}{x}\right )^{2}-4 i \ln \relax (x ) \pi \mathrm {csgn}\left (\frac {i \left (x \ln \relax (2)-x^{2}-3\right )}{x}\right )^{3}+4 i \ln \left (x \ln \relax (2)-x^{2}-3\right ) \pi \mathrm {csgn}\left (\frac {i \left (x \ln \relax (2)-x^{2}-3\right )}{x}\right )^{3}+4 \pi ^{2} \mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (i \left (x \ln \relax (2)-x^{2}-3\right )\right ) \mathrm {csgn}\left (\frac {i \left (x \ln \relax (2)-x^{2}-3\right )}{x}\right )-\pi ^{2} \mathrm {csgn}\left (\frac {i}{x}\right )^{2} \mathrm {csgn}\left (i \left (x \ln \relax (2)-x^{2}-3\right )\right )^{2} \mathrm {csgn}\left (\frac {i \left (x \ln \relax (2)-x^{2}-3\right )}{x}\right )^{2}+2 \pi ^{2} \mathrm {csgn}\left (\frac {i}{x}\right )^{2} \mathrm {csgn}\left (i \left (x \ln \relax (2)-x^{2}-3\right )\right ) \mathrm {csgn}\left (\frac {i \left (x \ln \relax (2)-x^{2}-3\right )}{x}\right )^{3}+4 \pi ^{2} \mathrm {csgn}\left (\frac {i \left (x \ln \relax (2)-x^{2}-3\right )}{x}\right )^{5}-4 \pi ^{2} \mathrm {csgn}\left (\frac {i \left (x \ln \relax (2)-x^{2}-3\right )}{x}\right )^{4}-4 \pi ^{2} \mathrm {csgn}\left (\frac {i \left (x \ln \relax (2)-x^{2}-3\right )}{x}\right )^{3}-\pi ^{2} \mathrm {csgn}\left (\frac {i \left (x \ln \relax (2)-x^{2}-3\right )}{x}\right )^{6}+8 \pi ^{2} \mathrm {csgn}\left (\frac {i \left (x \ln \relax (2)-x^{2}-3\right )}{x}\right )^{2}-8 \ln \relax (x ) \ln \left (x \ln \relax (2)-x^{2}-3\right )-4 i \ln \left (x \ln \relax (2)-x^{2}-3\right ) \pi \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (i \left (x \ln \relax (2)-x^{2}-3\right )\right ) \mathrm {csgn}\left (\frac {i \left (x \ln \relax (2)-x^{2}-3\right )}{x}\right )+4 i \ln \relax (x ) \pi \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (i \left (x \ln \relax (2)-x^{2}-3\right )\right ) \mathrm {csgn}\left (\frac {i \left (x \ln \relax (2)-x^{2}-3\right )}{x}\right )-8 i \pi \ln \relax (x )+8 i \pi \ln \left (x \ln \relax (2)-x^{2}-3\right )-2 \pi ^{2} \mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i \left (x \ln \relax (2)-x^{2}-3\right )}{x}\right )^{5}-2 \pi ^{2} \mathrm {csgn}\left (i \left (x \ln \relax (2)-x^{2}-3\right )\right ) \mathrm {csgn}\left (\frac {i \left (x \ln \relax (2)-x^{2}-3\right )}{x}\right )^{5}-\pi ^{2} \mathrm {csgn}\left (i \left (x \ln \relax (2)-x^{2}-3\right )\right )^{2} \mathrm {csgn}\left (\frac {i \left (x \ln \relax (2)-x^{2}-3\right )}{x}\right )^{4}-4 \pi ^{2} \mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i \left (x \ln \relax (2)-x^{2}-3\right )}{x}\right )^{2}-4 \pi ^{2} \mathrm {csgn}\left (i \left (x \ln \relax (2)-x^{2}-3\right )\right ) \mathrm {csgn}\left (\frac {i \left (x \ln \relax (2)-x^{2}-3\right )}{x}\right )^{2}-\pi ^{2} \mathrm {csgn}\left (\frac {i}{x}\right )^{2} \mathrm {csgn}\left (\frac {i \left (x \ln \relax (2)-x^{2}-3\right )}{x}\right )^{4}+4 \pi ^{2} \mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i \left (x \ln \relax (2)-x^{2}-3\right )}{x}\right )^{4}+4 \pi ^{2} \mathrm {csgn}\left (i \left (x \ln \relax (2)-x^{2}-3\right )\right ) \mathrm {csgn}\left (\frac {i \left (x \ln \relax (2)-x^{2}-3\right )}{x}\right )^{4}+4 \ln \left (x \ln \relax (2)-x^{2}-3\right )^{2}-4 i \ln \relax (x ) \pi \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i \left (x \ln \relax (2)-x^{2}-3\right )}{x}\right )^{2}+4 i \ln \left (x \ln \relax (2)-x^{2}-3\right ) \pi \,\mathrm {csgn}\left (i \left (x \ln \relax (2)-x^{2}-3\right )\right ) \mathrm {csgn}\left (\frac {i \left (x \ln \relax (2)-x^{2}-3\right )}{x}\right )^{2}-4 i \ln \relax (x ) \pi \,\mathrm {csgn}\left (i \left (x \ln \relax (2)-x^{2}-3\right )\right ) \mathrm {csgn}\left (\frac {i \left (x \ln \relax (2)-x^{2}-3\right )}{x}\right )^{2}+4 i \ln \left (x \ln \relax (2)-x^{2}-3\right ) \pi \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i \left (x \ln \relax (2)-x^{2}-3\right )}{x}\right )^{2}\right ) {\mathrm e}^{2 \,{\mathrm e}^{6 x}-4 x^{2} {\mathrm e}^{3 x}+2 x^{4}}\) | \(1142\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.64, size = 103, normalized size = 2.86 \begin {gather*} 4 \, e^{\left (2 \, x^{4} - 4 \, x^{2} e^{\left (3 \, x\right )} + 2 \, e^{\left (6 \, x\right )}\right )} \log \left (x^{2} - x \log \relax (2) + 3\right )^{2} - 8 \, e^{\left (2 \, x^{4} - 4 \, x^{2} e^{\left (3 \, x\right )} + 2 \, e^{\left (6 \, x\right )}\right )} \log \left (x^{2} - x \log \relax (2) + 3\right ) \log \relax (x) + 4 \, e^{\left (2 \, x^{4} - 4 \, x^{2} e^{\left (3 \, x\right )} + 2 \, e^{\left (6 \, x\right )}\right )} \log \relax (x)^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int \frac {{\mathrm {e}}^{2\,{\mathrm {e}}^{6\,x}-4\,x^2\,{\mathrm {e}}^{3\,x}+2\,x^4}\,\left (\left ({\mathrm {e}}^{6\,x}\,\left (48\,x^3-48\,\ln \relax (2)\,x^2+144\,x\right )-32\,x^5\,\ln \relax (2)-{\mathrm {e}}^{3\,x}\,\left (96\,x^2-\ln \relax (2)\,\left (48\,x^4+32\,x^3\right )+144\,x^3+32\,x^4+48\,x^5\right )+96\,x^4+32\,x^6\right )\,{\ln \left (\frac {x^2-\ln \relax (2)\,x+3}{x}\right )}^2+\left (8\,x^2-24\right )\,\ln \left (\frac {x^2-\ln \relax (2)\,x+3}{x}\right )\right )}{x^3-\ln \relax (2)\,x^2+3\,x} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________