Optimal. Leaf size=28 \[ 2+\frac {1}{15} \left (-e^2-x\right )-e^x \log \left (-1+\frac {4}{x^2}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.54, antiderivative size = 48, normalized size of antiderivative = 1.71, number of steps used = 4, number of rules used = 3, integrand size = 51, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.059, Rules used = {1593, 6725, 2288} \begin {gather*} -\frac {e^x \left (4 x \log \left (\frac {4}{x^2}-1\right )-x^3 \log \left (\frac {4}{x^2}-1\right )\right )}{\left (4-x^2\right ) x}-\frac {x}{15} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 1593
Rule 2288
Rule 6725
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-120 e^x+4 x-x^3+e^x \left (60 x-15 x^3\right ) \log \left (\frac {4-x^2}{x^2}\right )}{x \left (-60+15 x^2\right )} \, dx\\ &=\int \left (-\frac {1}{15}-\frac {e^x \left (8-4 x \log \left (-1+\frac {4}{x^2}\right )+x^3 \log \left (-1+\frac {4}{x^2}\right )\right )}{x \left (-4+x^2\right )}\right ) \, dx\\ &=-\frac {x}{15}-\int \frac {e^x \left (8-4 x \log \left (-1+\frac {4}{x^2}\right )+x^3 \log \left (-1+\frac {4}{x^2}\right )\right )}{x \left (-4+x^2\right )} \, dx\\ &=-\frac {x}{15}-\frac {e^x \left (4 x \log \left (-1+\frac {4}{x^2}\right )-x^3 \log \left (-1+\frac {4}{x^2}\right )\right )}{x \left (4-x^2\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.09, size = 21, normalized size = 0.75 \begin {gather*} \frac {1}{15} \left (-x-15 e^x \log \left (-1+\frac {4}{x^2}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.55, size = 19, normalized size = 0.68 \begin {gather*} -e^{x} \log \left (-\frac {x^{2} - 4}{x^{2}}\right ) - \frac {1}{15} \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 19, normalized size = 0.68 \begin {gather*} -e^{x} \log \left (-\frac {x^{2} - 4}{x^{2}}\right ) - \frac {1}{15} \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.22, size = 21, normalized size = 0.75
method | result | size |
default | \(-\frac {x}{15}-\ln \left (\frac {-x^{2}+4}{x^{2}}\right ) {\mathrm e}^{x}\) | \(21\) |
norman | \(-\frac {x}{15}-\ln \left (\frac {-x^{2}+4}{x^{2}}\right ) {\mathrm e}^{x}\) | \(21\) |
risch | \(-{\mathrm e}^{x} \ln \left (x^{2}-4\right )+2 \,{\mathrm e}^{x} \ln \relax (x )-\frac {x}{15}-\frac {i \pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right ) {\mathrm e}^{x}}{2}+i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2} {\mathrm e}^{x}-\frac {i \pi \mathrm {csgn}\left (i x^{2}\right )^{3} {\mathrm e}^{x}}{2}+\frac {i {\mathrm e}^{x} \pi \,\mathrm {csgn}\left (i \left (x^{2}-4\right )\right ) \mathrm {csgn}\left (\frac {i}{x^{2}}\right ) \mathrm {csgn}\left (\frac {i \left (x^{2}-4\right )}{x^{2}}\right )}{2}-\frac {i {\mathrm e}^{x} \pi \,\mathrm {csgn}\left (i \left (x^{2}-4\right )\right ) \mathrm {csgn}\left (\frac {i \left (x^{2}-4\right )}{x^{2}}\right )^{2}}{2}+i {\mathrm e}^{x} \pi \mathrm {csgn}\left (\frac {i \left (x^{2}-4\right )}{x^{2}}\right )^{2}-\frac {i {\mathrm e}^{x} \pi \,\mathrm {csgn}\left (\frac {i}{x^{2}}\right ) \mathrm {csgn}\left (\frac {i \left (x^{2}-4\right )}{x^{2}}\right )^{2}}{2}-\frac {i {\mathrm e}^{x} \pi \mathrm {csgn}\left (\frac {i \left (x^{2}-4\right )}{x^{2}}\right )^{3}}{2}-i {\mathrm e}^{x} \pi \) | \(212\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 28, normalized size = 1.00 \begin {gather*} -e^{x} \log \left (x + 2\right ) + 2 \, e^{x} \log \relax (x) - e^{x} \log \left (-x + 2\right ) - \frac {1}{15} \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.38, size = 19, normalized size = 0.68 \begin {gather*} -\frac {x}{15}-{\mathrm {e}}^x\,\ln \left (-\frac {x^2-4}{x^2}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.40, size = 17, normalized size = 0.61 \begin {gather*} - \frac {x}{15} - e^{x} \log {\left (\frac {4 - x^{2}}{x^{2}} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________