Optimal. Leaf size=32 \[ e^{-e^{x^2}+x+\frac {x}{10-e^{\frac {e^x}{2 x}}+x}} \]
________________________________________________________________________________________
Rubi [F] time = 105.93, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (\frac {-11 x-x^2+e^{x^2} (10+x)+e^{\frac {e^x}{2 x}} \left (-e^{x^2}+x\right )}{-10+e^{\frac {e^x}{2 x}}-x}\right ) \left (220 x+40 x^2+2 x^3+e^{\frac {e^x}{x}} \left (2 x-4 e^{x^2} x^2\right )+e^{x^2} \left (-400 x^2-80 x^3-4 x^4\right )+e^{\frac {e^x}{2 x}} \left (e^x (-1+x)-42 x-4 x^2+e^{x^2} \left (80 x^2+8 x^3\right )\right )\right )}{200 x+2 e^{\frac {e^x}{x}} x+40 x^2+2 x^3+e^{\frac {e^x}{2 x}} \left (-40 x-4 x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\exp \left (\frac {-11 x-x^2+e^{x^2} (10+x)+e^{\frac {e^x}{2 x}} \left (-e^{x^2}+x\right )}{-10+e^{\frac {e^x}{2 x}}-x}\right ) \left (220 x+40 x^2+2 x^3+e^{\frac {e^x}{x}} \left (2 x-4 e^{x^2} x^2\right )+e^{x^2} \left (-400 x^2-80 x^3-4 x^4\right )+e^{\frac {e^x}{2 x}} \left (e^x (-1+x)-42 x-4 x^2+e^{x^2} \left (80 x^2+8 x^3\right )\right )\right )}{2 x \left (10-e^{\frac {e^x}{2 x}}+x\right )^2} \, dx\\ &=\frac {1}{2} \int \frac {\exp \left (\frac {-11 x-x^2+e^{x^2} (10+x)+e^{\frac {e^x}{2 x}} \left (-e^{x^2}+x\right )}{-10+e^{\frac {e^x}{2 x}}-x}\right ) \left (220 x+40 x^2+2 x^3+e^{\frac {e^x}{x}} \left (2 x-4 e^{x^2} x^2\right )+e^{x^2} \left (-400 x^2-80 x^3-4 x^4\right )+e^{\frac {e^x}{2 x}} \left (e^x (-1+x)-42 x-4 x^2+e^{x^2} \left (80 x^2+8 x^3\right )\right )\right )}{x \left (10-e^{\frac {e^x}{2 x}}+x\right )^2} \, dx\\ &=\frac {1}{2} \int \left (\frac {220 \exp \left (\frac {-11 x-x^2+e^{x^2} (10+x)+e^{\frac {e^x}{2 x}} \left (-e^{x^2}+x\right )}{-10+e^{\frac {e^x}{2 x}}-x}\right )}{\left (-10+e^{\frac {e^x}{2 x}}-x\right )^2}-\frac {42 \exp \left (\frac {e^x}{2 x}+\frac {-11 x-x^2+e^{x^2} (10+x)+e^{\frac {e^x}{2 x}} \left (-e^{x^2}+x\right )}{-10+e^{\frac {e^x}{2 x}}-x}\right )}{\left (-10+e^{\frac {e^x}{2 x}}-x\right )^2}+\frac {2 \exp \left (\frac {e^x}{x}+\frac {-11 x-x^2+e^{x^2} (10+x)+e^{\frac {e^x}{2 x}} \left (-e^{x^2}+x\right )}{-10+e^{\frac {e^x}{2 x}}-x}\right )}{\left (-10+e^{\frac {e^x}{2 x}}-x\right )^2}+\frac {\exp \left (\frac {e^x}{2 x}+x+\frac {-11 x-x^2+e^{x^2} (10+x)+e^{\frac {e^x}{2 x}} \left (-e^{x^2}+x\right )}{-10+e^{\frac {e^x}{2 x}}-x}\right ) (-1+x)}{\left (-10+e^{\frac {e^x}{2 x}}-x\right )^2 x}-4 \exp \left (x^2+\frac {-11 x-x^2+e^{x^2} (10+x)+e^{\frac {e^x}{2 x}} \left (-e^{x^2}+x\right )}{-10+e^{\frac {e^x}{2 x}}-x}\right ) x+\frac {40 \exp \left (\frac {-11 x-x^2+e^{x^2} (10+x)+e^{\frac {e^x}{2 x}} \left (-e^{x^2}+x\right )}{-10+e^{\frac {e^x}{2 x}}-x}\right ) x}{\left (-10+e^{\frac {e^x}{2 x}}-x\right )^2}-\frac {4 \exp \left (\frac {e^x}{2 x}+\frac {-11 x-x^2+e^{x^2} (10+x)+e^{\frac {e^x}{2 x}} \left (-e^{x^2}+x\right )}{-10+e^{\frac {e^x}{2 x}}-x}\right ) x}{\left (-10+e^{\frac {e^x}{2 x}}-x\right )^2}+\frac {2 \exp \left (\frac {-11 x-x^2+e^{x^2} (10+x)+e^{\frac {e^x}{2 x}} \left (-e^{x^2}+x\right )}{-10+e^{\frac {e^x}{2 x}}-x}\right ) x^2}{\left (-10+e^{\frac {e^x}{2 x}}-x\right )^2}\right ) \, dx\\ &=\frac {1}{2} \int \frac {\exp \left (\frac {e^x}{2 x}+x+\frac {-11 x-x^2+e^{x^2} (10+x)+e^{\frac {e^x}{2 x}} \left (-e^{x^2}+x\right )}{-10+e^{\frac {e^x}{2 x}}-x}\right ) (-1+x)}{\left (-10+e^{\frac {e^x}{2 x}}-x\right )^2 x} \, dx-2 \int \exp \left (x^2+\frac {-11 x-x^2+e^{x^2} (10+x)+e^{\frac {e^x}{2 x}} \left (-e^{x^2}+x\right )}{-10+e^{\frac {e^x}{2 x}}-x}\right ) x \, dx-2 \int \frac {\exp \left (\frac {e^x}{2 x}+\frac {-11 x-x^2+e^{x^2} (10+x)+e^{\frac {e^x}{2 x}} \left (-e^{x^2}+x\right )}{-10+e^{\frac {e^x}{2 x}}-x}\right ) x}{\left (-10+e^{\frac {e^x}{2 x}}-x\right )^2} \, dx+20 \int \frac {\exp \left (\frac {-11 x-x^2+e^{x^2} (10+x)+e^{\frac {e^x}{2 x}} \left (-e^{x^2}+x\right )}{-10+e^{\frac {e^x}{2 x}}-x}\right ) x}{\left (-10+e^{\frac {e^x}{2 x}}-x\right )^2} \, dx-21 \int \frac {\exp \left (\frac {e^x}{2 x}+\frac {-11 x-x^2+e^{x^2} (10+x)+e^{\frac {e^x}{2 x}} \left (-e^{x^2}+x\right )}{-10+e^{\frac {e^x}{2 x}}-x}\right )}{\left (-10+e^{\frac {e^x}{2 x}}-x\right )^2} \, dx+110 \int \frac {\exp \left (\frac {-11 x-x^2+e^{x^2} (10+x)+e^{\frac {e^x}{2 x}} \left (-e^{x^2}+x\right )}{-10+e^{\frac {e^x}{2 x}}-x}\right )}{\left (-10+e^{\frac {e^x}{2 x}}-x\right )^2} \, dx+\int \frac {\exp \left (\frac {e^x}{x}+\frac {-11 x-x^2+e^{x^2} (10+x)+e^{\frac {e^x}{2 x}} \left (-e^{x^2}+x\right )}{-10+e^{\frac {e^x}{2 x}}-x}\right )}{\left (-10+e^{\frac {e^x}{2 x}}-x\right )^2} \, dx+\int \frac {\exp \left (\frac {-11 x-x^2+e^{x^2} (10+x)+e^{\frac {e^x}{2 x}} \left (-e^{x^2}+x\right )}{-10+e^{\frac {e^x}{2 x}}-x}\right ) x^2}{\left (-10+e^{\frac {e^x}{2 x}}-x\right )^2} \, dx\\ &=\frac {1}{2} \int \left (\frac {e^{\frac {e^x}{2 x}+x+\frac {-11 x-x^2+e^{x^2} (10+x)+e^{\frac {e^x}{2 x}} \left (-e^{x^2}+x\right )}{-10+e^{\frac {e^x}{2 x}}-x}}}{\left (-10+e^{\frac {e^x}{2 x}}-x\right )^2}-\frac {e^{\frac {e^x}{2 x}+x+\frac {-11 x-x^2+e^{x^2} (10+x)+e^{\frac {e^x}{2 x}} \left (-e^{x^2}+x\right )}{-10+e^{\frac {e^x}{2 x}}-x}}}{x \left (10-e^{\frac {e^x}{2 x}}+x\right )^2}\right ) \, dx-2 \int e^{x^2+\frac {-11 x-x^2+e^{x^2} (10+x)+e^{\frac {e^x}{2 x}} \left (-e^{x^2}+x\right )}{-10+e^{\frac {e^x}{2 x}}-x}} x \, dx-2 \int \frac {e^{\frac {e^x}{2 x}+\frac {-11 x-x^2+e^{x^2} (10+x)+e^{\frac {e^x}{2 x}} \left (-e^{x^2}+x\right )}{-10+e^{\frac {e^x}{2 x}}-x}} x}{\left (-10+e^{\frac {e^x}{2 x}}-x\right )^2} \, dx+20 \int \frac {e^{\frac {-11 x-x^2+e^{x^2} (10+x)+e^{\frac {e^x}{2 x}} \left (-e^{x^2}+x\right )}{-10+e^{\frac {e^x}{2 x}}-x}} x}{\left (-10+e^{\frac {e^x}{2 x}}-x\right )^2} \, dx-21 \int \frac {e^{\frac {e^x}{2 x}+\frac {-11 x-x^2+e^{x^2} (10+x)+e^{\frac {e^x}{2 x}} \left (-e^{x^2}+x\right )}{-10+e^{\frac {e^x}{2 x}}-x}}}{\left (-10+e^{\frac {e^x}{2 x}}-x\right )^2} \, dx+110 \int \frac {e^{\frac {-11 x-x^2+e^{x^2} (10+x)+e^{\frac {e^x}{2 x}} \left (-e^{x^2}+x\right )}{-10+e^{\frac {e^x}{2 x}}-x}}}{\left (-10+e^{\frac {e^x}{2 x}}-x\right )^2} \, dx+\int \frac {e^{\frac {e^x}{x}+\frac {-11 x-x^2+e^{x^2} (10+x)+e^{\frac {e^x}{2 x}} \left (-e^{x^2}+x\right )}{-10+e^{\frac {e^x}{2 x}}-x}}}{\left (-10+e^{\frac {e^x}{2 x}}-x\right )^2} \, dx+\int \frac {e^{\frac {-11 x-x^2+e^{x^2} (10+x)+e^{\frac {e^x}{2 x}} \left (-e^{x^2}+x\right )}{-10+e^{\frac {e^x}{2 x}}-x}} x^2}{\left (-10+e^{\frac {e^x}{2 x}}-x\right )^2} \, dx\\ &=\frac {1}{2} \int \frac {e^{\frac {e^x}{2 x}+x+\frac {-11 x-x^2+e^{x^2} (10+x)+e^{\frac {e^x}{2 x}} \left (-e^{x^2}+x\right )}{-10+e^{\frac {e^x}{2 x}}-x}}}{\left (-10+e^{\frac {e^x}{2 x}}-x\right )^2} \, dx-\frac {1}{2} \int \frac {e^{\frac {e^x}{2 x}+x+\frac {-11 x-x^2+e^{x^2} (10+x)+e^{\frac {e^x}{2 x}} \left (-e^{x^2}+x\right )}{-10+e^{\frac {e^x}{2 x}}-x}}}{x \left (10-e^{\frac {e^x}{2 x}}+x\right )^2} \, dx-2 \int e^{x^2+\frac {-11 x-x^2+e^{x^2} (10+x)+e^{\frac {e^x}{2 x}} \left (-e^{x^2}+x\right )}{-10+e^{\frac {e^x}{2 x}}-x}} x \, dx-2 \int \frac {e^{\frac {e^x}{2 x}+\frac {-11 x-x^2+e^{x^2} (10+x)+e^{\frac {e^x}{2 x}} \left (-e^{x^2}+x\right )}{-10+e^{\frac {e^x}{2 x}}-x}} x}{\left (-10+e^{\frac {e^x}{2 x}}-x\right )^2} \, dx+20 \int \frac {e^{\frac {-11 x-x^2+e^{x^2} (10+x)+e^{\frac {e^x}{2 x}} \left (-e^{x^2}+x\right )}{-10+e^{\frac {e^x}{2 x}}-x}} x}{\left (-10+e^{\frac {e^x}{2 x}}-x\right )^2} \, dx-21 \int \frac {e^{\frac {e^x}{2 x}+\frac {-11 x-x^2+e^{x^2} (10+x)+e^{\frac {e^x}{2 x}} \left (-e^{x^2}+x\right )}{-10+e^{\frac {e^x}{2 x}}-x}}}{\left (-10+e^{\frac {e^x}{2 x}}-x\right )^2} \, dx+110 \int \frac {e^{\frac {-11 x-x^2+e^{x^2} (10+x)+e^{\frac {e^x}{2 x}} \left (-e^{x^2}+x\right )}{-10+e^{\frac {e^x}{2 x}}-x}}}{\left (-10+e^{\frac {e^x}{2 x}}-x\right )^2} \, dx+\int \frac {e^{\frac {e^x}{x}+\frac {-11 x-x^2+e^{x^2} (10+x)+e^{\frac {e^x}{2 x}} \left (-e^{x^2}+x\right )}{-10+e^{\frac {e^x}{2 x}}-x}}}{\left (-10+e^{\frac {e^x}{2 x}}-x\right )^2} \, dx+\int \frac {e^{\frac {-11 x-x^2+e^{x^2} (10+x)+e^{\frac {e^x}{2 x}} \left (-e^{x^2}+x\right )}{-10+e^{\frac {e^x}{2 x}}-x}} x^2}{\left (-10+e^{\frac {e^x}{2 x}}-x\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.46, size = 33, normalized size = 1.03 \begin {gather*} e^{-e^{x^2}+x-\frac {x}{-10+e^{\frac {e^x}{2 x}}-x}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.77, size = 51, normalized size = 1.59 \begin {gather*} e^{\left (\frac {x^{2} - {\left (x + 10\right )} e^{\left (x^{2}\right )} - {\left (x - e^{\left (x^{2}\right )}\right )} e^{\left (\frac {e^{x}}{2 \, x}\right )} + 11 \, x}{x - e^{\left (\frac {e^{x}}{2 \, x}\right )} + 10}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.34, size = 63, normalized size = 1.97
method | result | size |
risch | \({\mathrm e}^{\frac {{\mathrm e}^{\frac {2 x^{3}+{\mathrm e}^{x}}{2 x}}-{\mathrm e}^{x^{2}} x -{\mathrm e}^{\frac {{\mathrm e}^{x}}{2 x}} x +x^{2}-10 \,{\mathrm e}^{x^{2}}+11 x}{x -{\mathrm e}^{\frac {{\mathrm e}^{x}}{2 x}}+10}}\) | \(63\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {1}{2} \, \int \frac {{\left (2 \, x^{3} + 40 \, x^{2} - 4 \, {\left (x^{4} + 20 \, x^{3} + 100 \, x^{2}\right )} e^{\left (x^{2}\right )} - 2 \, {\left (2 \, x^{2} e^{\left (x^{2}\right )} - x\right )} e^{\left (\frac {e^{x}}{x}\right )} - {\left (4 \, x^{2} - 8 \, {\left (x^{3} + 10 \, x^{2}\right )} e^{\left (x^{2}\right )} - {\left (x - 1\right )} e^{x} + 42 \, x\right )} e^{\left (\frac {e^{x}}{2 \, x}\right )} + 220 \, x\right )} e^{\left (\frac {x^{2} - {\left (x + 10\right )} e^{\left (x^{2}\right )} - {\left (x - e^{\left (x^{2}\right )}\right )} e^{\left (\frac {e^{x}}{2 \, x}\right )} + 11 \, x}{x - e^{\left (\frac {e^{x}}{2 \, x}\right )} + 10}\right )}}{x^{3} + 20 \, x^{2} + x e^{\left (\frac {e^{x}}{x}\right )} - 2 \, {\left (x^{2} + 10 \, x\right )} e^{\left (\frac {e^{x}}{2 \, x}\right )} + 100 \, x}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.36, size = 141, normalized size = 4.41 \begin {gather*} {\mathrm {e}}^{-\frac {10\,{\mathrm {e}}^{x^2}}{x-{\mathrm {e}}^{\frac {{\mathrm {e}}^x}{2\,x}}+10}}\,{\mathrm {e}}^{\frac {11\,x}{x-{\mathrm {e}}^{\frac {{\mathrm {e}}^x}{2\,x}}+10}}\,{\mathrm {e}}^{-\frac {x\,{\mathrm {e}}^{x^2}}{x-{\mathrm {e}}^{\frac {{\mathrm {e}}^x}{2\,x}}+10}}\,{\mathrm {e}}^{\frac {{\mathrm {e}}^{x^2}\,{\mathrm {e}}^{\frac {{\mathrm {e}}^x}{2\,x}}}{x-{\mathrm {e}}^{\frac {{\mathrm {e}}^x}{2\,x}}+10}}\,{\mathrm {e}}^{\frac {x^2}{x-{\mathrm {e}}^{\frac {{\mathrm {e}}^x}{2\,x}}+10}}\,{\mathrm {e}}^{-\frac {x\,{\mathrm {e}}^{\frac {{\mathrm {e}}^x}{2\,x}}}{x-{\mathrm {e}}^{\frac {{\mathrm {e}}^x}{2\,x}}+10}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 18.04, size = 42, normalized size = 1.31 \begin {gather*} e^{\frac {- x^{2} - 11 x + \left (x + 10\right ) e^{x^{2}} + \left (x - e^{x^{2}}\right ) e^{\frac {e^{x}}{2 x}}}{- x + e^{\frac {e^{x}}{2 x}} - 10}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________