Optimal. Leaf size=22 \[ -5+x+\left (-5+e^{5/2}+x+x^4+\frac {\log (x)}{x^2}\right )^2 \]
________________________________________________________________________________________
Rubi [B] time = 0.20, antiderivative size = 76, normalized size of antiderivative = 3.45, number of steps used = 12, number of rules used = 4, integrand size = 98, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.041, Rules used = {14, 2357, 2304, 2305} \begin {gather*} x^8+2 x^5-2 \left (5-e^{5/2}\right ) x^4+\frac {\log ^2(x)}{x^4}+x^2+2 x^2 \log (x)-\frac {2 \left (5-e^{5/2}\right ) \log (x)}{x^2}-\left (9-2 e^{5/2}\right ) x+\frac {2 \log (x)}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2304
Rule 2305
Rule 2357
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {-10 \left (1-\frac {e^{5/2}}{5}\right )+2 x-9 \left (1-\frac {2 e^{5/2}}{9}\right ) x^3+4 x^4-40 \left (1-\frac {e^{5/2}}{5}\right ) x^6+10 x^7+8 x^{10}}{x^3}+\frac {2 \left (1+10 \left (1-\frac {e^{5/2}}{5}\right ) x^2-x^3+2 x^6\right ) \log (x)}{x^5}-\frac {4 \log ^2(x)}{x^5}\right ) \, dx\\ &=2 \int \frac {\left (1+10 \left (1-\frac {e^{5/2}}{5}\right ) x^2-x^3+2 x^6\right ) \log (x)}{x^5} \, dx-4 \int \frac {\log ^2(x)}{x^5} \, dx+\int \frac {-10 \left (1-\frac {e^{5/2}}{5}\right )+2 x-9 \left (1-\frac {2 e^{5/2}}{9}\right ) x^3+4 x^4-40 \left (1-\frac {e^{5/2}}{5}\right ) x^6+10 x^7+8 x^{10}}{x^3} \, dx\\ &=\frac {\log ^2(x)}{x^4}-2 \int \frac {\log (x)}{x^5} \, dx+2 \int \left (\frac {\log (x)}{x^5}-\frac {2 \left (-5+e^{5/2}\right ) \log (x)}{x^3}-\frac {\log (x)}{x^2}+2 x \log (x)\right ) \, dx+\int \left (-9 \left (1-\frac {2 e^{5/2}}{9}\right )+\frac {2 \left (-5+e^{5/2}\right )}{x^3}+\frac {2}{x^2}+4 x+8 \left (-5+e^{5/2}\right ) x^3+10 x^4+8 x^7\right ) \, dx\\ &=\frac {1}{8 x^4}+\frac {5-e^{5/2}}{x^2}-\frac {2}{x}-\left (9-2 e^{5/2}\right ) x+2 x^2-2 \left (5-e^{5/2}\right ) x^4+2 x^5+x^8+\frac {\log (x)}{2 x^4}+\frac {\log ^2(x)}{x^4}+2 \int \frac {\log (x)}{x^5} \, dx-2 \int \frac {\log (x)}{x^2} \, dx+4 \int x \log (x) \, dx+\left (4 \left (5-e^{5/2}\right )\right ) \int \frac {\log (x)}{x^3} \, dx\\ &=-\left (\left (9-2 e^{5/2}\right ) x\right )+x^2-2 \left (5-e^{5/2}\right ) x^4+2 x^5+x^8-\frac {2 \left (5-e^{5/2}\right ) \log (x)}{x^2}+\frac {2 \log (x)}{x}+2 x^2 \log (x)+\frac {\log ^2(x)}{x^4}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.07, size = 57, normalized size = 2.59 \begin {gather*} x \left (-9+x-10 x^3+2 x^4+x^7+2 e^{5/2} \left (1+x^3\right )\right )+\frac {2 \left (-5+e^{5/2}+x+x^4\right ) \log (x)}{x^2}+\frac {\log ^2(x)}{x^4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.60, size = 63, normalized size = 2.86 \begin {gather*} \frac {x^{12} + 2 \, x^{9} - 10 \, x^{8} + x^{6} - 9 \, x^{5} + 2 \, {\left (x^{8} + x^{5}\right )} e^{\frac {5}{2}} + 2 \, {\left (x^{6} + x^{3} + x^{2} e^{\frac {5}{2}} - 5 \, x^{2}\right )} \log \relax (x) + \log \relax (x)^{2}}{x^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.17, size = 74, normalized size = 3.36 \begin {gather*} \frac {x^{12} + 2 \, x^{9} + 2 \, x^{8} e^{\frac {5}{2}} - 10 \, x^{8} + 2 \, x^{6} \log \relax (x) + x^{6} + 2 \, x^{5} e^{\frac {5}{2}} - 9 \, x^{5} + 2 \, x^{3} \log \relax (x) + 2 \, x^{2} e^{\frac {5}{2}} \log \relax (x) - 10 \, x^{2} \log \relax (x) + \log \relax (x)^{2}}{x^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.02, size = 56, normalized size = 2.55
method | result | size |
risch | \(\frac {\ln \relax (x )^{2}}{x^{4}}+\frac {2 \left (x^{4}+{\mathrm e}^{\frac {5}{2}}+x -5\right ) \ln \relax (x )}{x^{2}}+x^{8}+2 \,{\mathrm e}^{\frac {5}{2}} x^{4}+2 x^{5}-10 x^{4}+2 x \,{\mathrm e}^{\frac {5}{2}}+x^{2}-9 x\) | \(56\) |
default | \(x^{8}+2 \,{\mathrm e}^{\frac {5}{2}} x^{4}+2 x^{5}-10 x^{4}+2 x^{2} \ln \relax (x )+x^{2}+2 x \,{\mathrm e}^{\frac {5}{2}}-9 x -4 \,{\mathrm e}^{\frac {5}{2}} \left (-\frac {\ln \relax (x )}{2 x^{2}}-\frac {1}{4 x^{2}}\right )+\frac {2 \ln \relax (x )}{x}-\frac {10 \ln \relax (x )}{x^{2}}-\frac {{\mathrm e}^{\frac {5}{2}}}{x^{2}}+\frac {\ln \relax (x )^{2}}{x^{4}}\) | \(86\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.37, size = 103, normalized size = 4.68 \begin {gather*} x^{8} + 2 \, x^{5} + 2 \, x^{4} e^{\frac {5}{2}} - 10 \, x^{4} + 2 \, x^{2} \log \relax (x) + x^{2} + 2 \, x e^{\frac {5}{2}} + {\left (\frac {2 \, \log \relax (x)}{x^{2}} + \frac {1}{x^{2}}\right )} e^{\frac {5}{2}} - 9 \, x + \frac {2 \, \log \relax (x)}{x} - \frac {e^{\frac {5}{2}}}{x^{2}} - \frac {10 \, \log \relax (x)}{x^{2}} + \frac {8 \, \log \relax (x)^{2} + 4 \, \log \relax (x) + 1}{8 \, x^{4}} - \frac {\log \relax (x)}{2 \, x^{4}} - \frac {1}{8 \, x^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.38, size = 68, normalized size = 3.09 \begin {gather*} \frac {x^{13}+2\,x^{10}+\left (2\,{\mathrm {e}}^{5/2}-10\right )\,x^9+2\,x^7\,\ln \relax (x)+x^7+\left (2\,{\mathrm {e}}^{5/2}-9\right )\,x^6+2\,x^4\,\ln \relax (x)+\left (2\,{\mathrm {e}}^{5/2}-10\right )\,x^3\,\ln \relax (x)+x\,{\ln \relax (x)}^2}{x^5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.22, size = 65, normalized size = 2.95 \begin {gather*} x^{8} + 2 x^{5} + x^{4} \left (-10 + 2 e^{\frac {5}{2}}\right ) + x^{2} + x \left (-9 + 2 e^{\frac {5}{2}}\right ) + \frac {\left (2 x^{4} + 2 x - 10 + 2 e^{\frac {5}{2}}\right ) \log {\relax (x )}}{x^{2}} + \frac {\log {\relax (x )}^{2}}{x^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________