Optimal. Leaf size=25 \[ 25 e^{e^x} \log ^2\left (\log \left (\frac {x}{4 \left (5+4 x^2\right )}\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 2.96, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{e^x} \left (250-200 x^2\right ) \log \left (\log \left (\frac {x}{20+16 x^2}\right )\right )+e^{e^x+x} \left (125 x+100 x^3\right ) \log \left (\frac {x}{20+16 x^2}\right ) \log ^2\left (\log \left (\frac {x}{20+16 x^2}\right )\right )}{\left (5 x+4 x^3\right ) \log \left (\frac {x}{20+16 x^2}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{e^x} \left (250-200 x^2\right ) \log \left (\log \left (\frac {x}{20+16 x^2}\right )\right )+e^{e^x+x} \left (125 x+100 x^3\right ) \log \left (\frac {x}{20+16 x^2}\right ) \log ^2\left (\log \left (\frac {x}{20+16 x^2}\right )\right )}{x \left (5+4 x^2\right ) \log \left (\frac {x}{20+16 x^2}\right )} \, dx\\ &=\int \left (-\frac {50 e^{e^x} \left (-5+4 x^2\right ) \log \left (\log \left (\frac {x}{20+16 x^2}\right )\right )}{x \left (5+4 x^2\right ) \log \left (\frac {x}{20+16 x^2}\right )}+25 e^{e^x+x} \log ^2\left (\log \left (\frac {x}{20+16 x^2}\right )\right )\right ) \, dx\\ &=25 \int e^{e^x+x} \log ^2\left (\log \left (\frac {x}{20+16 x^2}\right )\right ) \, dx-50 \int \frac {e^{e^x} \left (-5+4 x^2\right ) \log \left (\log \left (\frac {x}{20+16 x^2}\right )\right )}{x \left (5+4 x^2\right ) \log \left (\frac {x}{20+16 x^2}\right )} \, dx\\ &=25 \int e^{e^x+x} \log ^2\left (\log \left (\frac {x}{20+16 x^2}\right )\right ) \, dx-50 \int \left (-\frac {e^{e^x} \log \left (\log \left (\frac {x}{20+16 x^2}\right )\right )}{x \log \left (\frac {x}{20+16 x^2}\right )}+\frac {8 e^{e^x} x \log \left (\log \left (\frac {x}{20+16 x^2}\right )\right )}{\left (5+4 x^2\right ) \log \left (\frac {x}{20+16 x^2}\right )}\right ) \, dx\\ &=25 \int e^{e^x+x} \log ^2\left (\log \left (\frac {x}{20+16 x^2}\right )\right ) \, dx+50 \int \frac {e^{e^x} \log \left (\log \left (\frac {x}{20+16 x^2}\right )\right )}{x \log \left (\frac {x}{20+16 x^2}\right )} \, dx-400 \int \frac {e^{e^x} x \log \left (\log \left (\frac {x}{20+16 x^2}\right )\right )}{\left (5+4 x^2\right ) \log \left (\frac {x}{20+16 x^2}\right )} \, dx\\ &=25 \int e^{e^x+x} \log ^2\left (\log \left (\frac {x}{20+16 x^2}\right )\right ) \, dx+50 \int \frac {e^{e^x} \log \left (\log \left (\frac {x}{20+16 x^2}\right )\right )}{x \log \left (\frac {x}{20+16 x^2}\right )} \, dx-400 \int \left (-\frac {e^{e^x} \log \left (\log \left (\frac {x}{20+16 x^2}\right )\right )}{4 \left (i \sqrt {5}-2 x\right ) \log \left (\frac {x}{20+16 x^2}\right )}+\frac {e^{e^x} \log \left (\log \left (\frac {x}{20+16 x^2}\right )\right )}{4 \left (i \sqrt {5}+2 x\right ) \log \left (\frac {x}{20+16 x^2}\right )}\right ) \, dx\\ &=25 \int e^{e^x+x} \log ^2\left (\log \left (\frac {x}{20+16 x^2}\right )\right ) \, dx+50 \int \frac {e^{e^x} \log \left (\log \left (\frac {x}{20+16 x^2}\right )\right )}{x \log \left (\frac {x}{20+16 x^2}\right )} \, dx+100 \int \frac {e^{e^x} \log \left (\log \left (\frac {x}{20+16 x^2}\right )\right )}{\left (i \sqrt {5}-2 x\right ) \log \left (\frac {x}{20+16 x^2}\right )} \, dx-100 \int \frac {e^{e^x} \log \left (\log \left (\frac {x}{20+16 x^2}\right )\right )}{\left (i \sqrt {5}+2 x\right ) \log \left (\frac {x}{20+16 x^2}\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 0.17, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {e^{e^x} \left (250-200 x^2\right ) \log \left (\log \left (\frac {x}{20+16 x^2}\right )\right )+e^{e^x+x} \left (125 x+100 x^3\right ) \log \left (\frac {x}{20+16 x^2}\right ) \log ^2\left (\log \left (\frac {x}{20+16 x^2}\right )\right )}{\left (5 x+4 x^3\right ) \log \left (\frac {x}{20+16 x^2}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.61, size = 21, normalized size = 0.84 \begin {gather*} 25 \, e^{\left (e^{x}\right )} \log \left (\log \left (\frac {x}{4 \, {\left (4 \, x^{2} + 5\right )}}\right )\right )^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {25 \, {\left ({\left (4 \, x^{3} + 5 \, x\right )} e^{\left (x + e^{x}\right )} \log \left (\frac {x}{4 \, {\left (4 \, x^{2} + 5\right )}}\right ) \log \left (\log \left (\frac {x}{4 \, {\left (4 \, x^{2} + 5\right )}}\right )\right )^{2} - 2 \, {\left (4 \, x^{2} - 5\right )} e^{\left (e^{x}\right )} \log \left (\log \left (\frac {x}{4 \, {\left (4 \, x^{2} + 5\right )}}\right )\right )\right )}}{{\left (4 \, x^{3} + 5 \, x\right )} \log \left (\frac {x}{4 \, {\left (4 \, x^{2} + 5\right )}}\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.24, size = 86, normalized size = 3.44
method | result | size |
risch | \(25 \,{\mathrm e}^{{\mathrm e}^{x}} \ln \left (-4 \ln \relax (2)+\ln \relax (x )-\ln \left (x^{2}+\frac {5}{4}\right )-\frac {i \pi \,\mathrm {csgn}\left (\frac {i x}{x^{2}+\frac {5}{4}}\right ) \left (-\mathrm {csgn}\left (\frac {i x}{x^{2}+\frac {5}{4}}\right )+\mathrm {csgn}\left (i x \right )\right ) \left (-\mathrm {csgn}\left (\frac {i x}{x^{2}+\frac {5}{4}}\right )+\mathrm {csgn}\left (\frac {i}{x^{2}+\frac {5}{4}}\right )\right )}{2}\right )^{2}\) | \(86\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.62, size = 25, normalized size = 1.00 \begin {gather*} 25 \, e^{\left (e^{x}\right )} \log \left (-2 \, \log \relax (2) - \log \left (4 \, x^{2} + 5\right ) + \log \relax (x)\right )^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.40, size = 21, normalized size = 0.84 \begin {gather*} 25\,{\ln \left (\ln \relax (x)-\ln \left (16\,x^2+20\right )\right )}^2\,{\mathrm {e}}^{{\mathrm {e}}^x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________