Optimal. Leaf size=24 \[ \frac {1}{5} x \left (-1+e^4+\frac {5 \left (2+x+\log \left (\frac {3}{x}\right )\right )}{x}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.01, antiderivative size = 15, normalized size of antiderivative = 0.62, number of steps used = 4, number of rules used = 3, integrand size = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.176, Rules used = {6, 12, 43} \begin {gather*} \frac {1}{5} \left (4+e^4\right ) x-\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 12
Rule 43
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-5+\left (4+e^4\right ) x}{5 x} \, dx\\ &=\frac {1}{5} \int \frac {-5+\left (4+e^4\right ) x}{x} \, dx\\ &=\frac {1}{5} \int \left (4+e^4-\frac {5}{x}\right ) \, dx\\ &=\frac {1}{5} \left (4+e^4\right ) x-\log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.00, size = 17, normalized size = 0.71 \begin {gather*} \frac {1}{5} \left (4 x+e^4 x-5 \log (x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.55, size = 13, normalized size = 0.54 \begin {gather*} \frac {1}{5} \, x e^{4} + \frac {4}{5} \, x - \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.19, size = 14, normalized size = 0.58 \begin {gather*} \frac {1}{5} \, x e^{4} + \frac {4}{5} \, x - \log \left ({\left | x \right |}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 14, normalized size = 0.58
method | result | size |
default | \(\frac {4 x}{5}+\frac {x \,{\mathrm e}^{4}}{5}-\ln \relax (x )\) | \(14\) |
norman | \(\left (\frac {4}{5}+\frac {{\mathrm e}^{4}}{5}\right ) x -\ln \relax (x )\) | \(14\) |
risch | \(\frac {4 x}{5}+\frac {x \,{\mathrm e}^{4}}{5}-\ln \relax (x )\) | \(14\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.35, size = 12, normalized size = 0.50 \begin {gather*} \frac {1}{5} \, x {\left (e^{4} + 4\right )} - \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.03, size = 13, normalized size = 0.54 \begin {gather*} x\,\left (\frac {{\mathrm {e}}^4}{5}+\frac {4}{5}\right )-\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.08, size = 10, normalized size = 0.42 \begin {gather*} \frac {x \left (4 + e^{4}\right )}{5} - \log {\relax (x )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________