3.5.40 \(\int \frac {e^{-16 x+4 x \log (x)} (4-96 x-4 x^3-12 x^4+(-4+32 x+4 x^4) \log (x))}{1-16 x+64 x^2-2 x^4+16 x^5+x^8} \, dx\)

Optimal. Leaf size=21 \[ \frac {e^{x (-16+4 \log (x))}}{-1+8 x+x^4} \]

________________________________________________________________________________________

Rubi [F]  time = 1.96, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{-16 x+4 x \log (x)} \left (4-96 x-4 x^3-12 x^4+\left (-4+32 x+4 x^4\right ) \log (x)\right )}{1-16 x+64 x^2-2 x^4+16 x^5+x^8} \, dx \end {gather*}

Verification is not applicable to the result.

[In]

Int[(E^(-16*x + 4*x*Log[x])*(4 - 96*x - 4*x^3 - 12*x^4 + (-4 + 32*x + 4*x^4)*Log[x]))/(1 - 16*x + 64*x^2 - 2*x
^4 + 16*x^5 + x^8),x]

[Out]

-8*Defer[Int][E^(4*x*(-4 + Log[x]))/(-1 + 8*x + x^4)^2, x] - 4*Defer[Int][(E^(4*x*(-4 + Log[x]))*x^3)/(-1 + 8*
x + x^4)^2, x] - 12*Defer[Int][E^(4*x*(-4 + Log[x]))/(-1 + 8*x + x^4), x] + 4*Defer[Int][(E^(4*x*(-4 + Log[x])
)*Log[x])/(-1 + 8*x + x^4), x]

Rubi steps

\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{4 x (-4+\log (x))} \left (4-96 x-4 x^3-12 x^4+\left (-4+32 x+4 x^4\right ) \log (x)\right )}{\left (1-8 x-x^4\right )^2} \, dx\\ &=\int \left (\frac {4 e^{4 x (-4+\log (x))}}{\left (-1+8 x+x^4\right )^2}-\frac {96 e^{4 x (-4+\log (x))} x}{\left (-1+8 x+x^4\right )^2}-\frac {4 e^{4 x (-4+\log (x))} x^3}{\left (-1+8 x+x^4\right )^2}-\frac {12 e^{4 x (-4+\log (x))} x^4}{\left (-1+8 x+x^4\right )^2}+\frac {4 e^{4 x (-4+\log (x))} \log (x)}{-1+8 x+x^4}\right ) \, dx\\ &=4 \int \frac {e^{4 x (-4+\log (x))}}{\left (-1+8 x+x^4\right )^2} \, dx-4 \int \frac {e^{4 x (-4+\log (x))} x^3}{\left (-1+8 x+x^4\right )^2} \, dx+4 \int \frac {e^{4 x (-4+\log (x))} \log (x)}{-1+8 x+x^4} \, dx-12 \int \frac {e^{4 x (-4+\log (x))} x^4}{\left (-1+8 x+x^4\right )^2} \, dx-96 \int \frac {e^{4 x (-4+\log (x))} x}{\left (-1+8 x+x^4\right )^2} \, dx\\ &=4 \int \frac {e^{4 x (-4+\log (x))}}{\left (-1+8 x+x^4\right )^2} \, dx-4 \int \frac {e^{4 x (-4+\log (x))} x^3}{\left (-1+8 x+x^4\right )^2} \, dx+4 \int \frac {e^{4 x (-4+\log (x))} \log (x)}{-1+8 x+x^4} \, dx-12 \int \left (\frac {e^{4 x (-4+\log (x))} (1-8 x)}{\left (-1+8 x+x^4\right )^2}+\frac {e^{4 x (-4+\log (x))}}{-1+8 x+x^4}\right ) \, dx-96 \int \frac {e^{4 x (-4+\log (x))} x}{\left (-1+8 x+x^4\right )^2} \, dx\\ &=4 \int \frac {e^{4 x (-4+\log (x))}}{\left (-1+8 x+x^4\right )^2} \, dx-4 \int \frac {e^{4 x (-4+\log (x))} x^3}{\left (-1+8 x+x^4\right )^2} \, dx+4 \int \frac {e^{4 x (-4+\log (x))} \log (x)}{-1+8 x+x^4} \, dx-12 \int \frac {e^{4 x (-4+\log (x))} (1-8 x)}{\left (-1+8 x+x^4\right )^2} \, dx-12 \int \frac {e^{4 x (-4+\log (x))}}{-1+8 x+x^4} \, dx-96 \int \frac {e^{4 x (-4+\log (x))} x}{\left (-1+8 x+x^4\right )^2} \, dx\\ &=4 \int \frac {e^{4 x (-4+\log (x))}}{\left (-1+8 x+x^4\right )^2} \, dx-4 \int \frac {e^{4 x (-4+\log (x))} x^3}{\left (-1+8 x+x^4\right )^2} \, dx+4 \int \frac {e^{4 x (-4+\log (x))} \log (x)}{-1+8 x+x^4} \, dx-12 \int \frac {e^{4 x (-4+\log (x))}}{-1+8 x+x^4} \, dx-12 \int \left (\frac {e^{4 x (-4+\log (x))}}{\left (-1+8 x+x^4\right )^2}-\frac {8 e^{4 x (-4+\log (x))} x}{\left (-1+8 x+x^4\right )^2}\right ) \, dx-96 \int \frac {e^{4 x (-4+\log (x))} x}{\left (-1+8 x+x^4\right )^2} \, dx\\ &=4 \int \frac {e^{4 x (-4+\log (x))}}{\left (-1+8 x+x^4\right )^2} \, dx-4 \int \frac {e^{4 x (-4+\log (x))} x^3}{\left (-1+8 x+x^4\right )^2} \, dx+4 \int \frac {e^{4 x (-4+\log (x))} \log (x)}{-1+8 x+x^4} \, dx-12 \int \frac {e^{4 x (-4+\log (x))}}{\left (-1+8 x+x^4\right )^2} \, dx-12 \int \frac {e^{4 x (-4+\log (x))}}{-1+8 x+x^4} \, dx\\ \end {aligned} \end {gather*}

________________________________________________________________________________________

Mathematica [A]  time = 0.67, size = 21, normalized size = 1.00 \begin {gather*} \frac {e^{-16 x} x^{4 x}}{-1+8 x+x^4} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(E^(-16*x + 4*x*Log[x])*(4 - 96*x - 4*x^3 - 12*x^4 + (-4 + 32*x + 4*x^4)*Log[x]))/(1 - 16*x + 64*x^2
 - 2*x^4 + 16*x^5 + x^8),x]

[Out]

x^(4*x)/(E^(16*x)*(-1 + 8*x + x^4))

________________________________________________________________________________________

fricas [A]  time = 1.04, size = 21, normalized size = 1.00 \begin {gather*} \frac {e^{\left (4 \, x \log \relax (x) - 16 \, x\right )}}{x^{4} + 8 \, x - 1} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((4*x^4+32*x-4)*log(x)-12*x^4-4*x^3-96*x+4)*exp(4*x*log(x)-16*x)/(x^8+16*x^5-2*x^4+64*x^2-16*x+1),x,
 algorithm="fricas")

[Out]

e^(4*x*log(x) - 16*x)/(x^4 + 8*x - 1)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {4 \, {\left (3 \, x^{4} + x^{3} - {\left (x^{4} + 8 \, x - 1\right )} \log \relax (x) + 24 \, x - 1\right )} e^{\left (4 \, x \log \relax (x) - 16 \, x\right )}}{x^{8} + 16 \, x^{5} - 2 \, x^{4} + 64 \, x^{2} - 16 \, x + 1}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((4*x^4+32*x-4)*log(x)-12*x^4-4*x^3-96*x+4)*exp(4*x*log(x)-16*x)/(x^8+16*x^5-2*x^4+64*x^2-16*x+1),x,
 algorithm="giac")

[Out]

integrate(-4*(3*x^4 + x^3 - (x^4 + 8*x - 1)*log(x) + 24*x - 1)*e^(4*x*log(x) - 16*x)/(x^8 + 16*x^5 - 2*x^4 + 6
4*x^2 - 16*x + 1), x)

________________________________________________________________________________________

maple [A]  time = 0.02, size = 21, normalized size = 1.00




method result size



risch \(\frac {x^{4 x} {\mathrm e}^{-16 x}}{x^{4}+8 x -1}\) \(21\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((4*x^4+32*x-4)*ln(x)-12*x^4-4*x^3-96*x+4)*exp(4*x*ln(x)-16*x)/(x^8+16*x^5-2*x^4+64*x^2-16*x+1),x,method=_
RETURNVERBOSE)

[Out]

1/(x^4+8*x-1)*x^(4*x)*exp(-16*x)

________________________________________________________________________________________

maxima [A]  time = 0.45, size = 21, normalized size = 1.00 \begin {gather*} \frac {e^{\left (4 \, x \log \relax (x) - 16 \, x\right )}}{x^{4} + 8 \, x - 1} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((4*x^4+32*x-4)*log(x)-12*x^4-4*x^3-96*x+4)*exp(4*x*log(x)-16*x)/(x^8+16*x^5-2*x^4+64*x^2-16*x+1),x,
 algorithm="maxima")

[Out]

e^(4*x*log(x) - 16*x)/(x^4 + 8*x - 1)

________________________________________________________________________________________

mupad [B]  time = 0.54, size = 20, normalized size = 0.95 \begin {gather*} \frac {x^{4\,x}\,{\mathrm {e}}^{-16\,x}}{x^4+8\,x-1} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(exp(4*x*log(x) - 16*x)*(96*x - log(x)*(32*x + 4*x^4 - 4) + 4*x^3 + 12*x^4 - 4))/(64*x^2 - 16*x - 2*x^4 +
 16*x^5 + x^8 + 1),x)

[Out]

(x^(4*x)*exp(-16*x))/(8*x + x^4 - 1)

________________________________________________________________________________________

sympy [A]  time = 0.31, size = 19, normalized size = 0.90 \begin {gather*} \frac {e^{4 x \log {\relax (x )} - 16 x}}{x^{4} + 8 x - 1} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((4*x**4+32*x-4)*ln(x)-12*x**4-4*x**3-96*x+4)*exp(4*x*ln(x)-16*x)/(x**8+16*x**5-2*x**4+64*x**2-16*x+
1),x)

[Out]

exp(4*x*log(x) - 16*x)/(x**4 + 8*x - 1)

________________________________________________________________________________________