Optimal. Leaf size=25 \[ -\frac {e^x}{\left (\frac {\log (x)}{9}+x (-4-x+x \log (x))\right )^2} \]
________________________________________________________________________________________
Rubi [F] time = 5.62, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^x \left (162-5832 x+1458 x^2+729 x^3\right )+e^x \left (-81 x+2916 x^2-729 x^3\right ) \log (x)}{-46656 x^4-34992 x^5-8748 x^6-729 x^7+\left (3888 x^3+1944 x^4+35235 x^5+17496 x^6+2187 x^7\right ) \log (x)+\left (-108 x^2-27 x^3-1944 x^4-486 x^5-8748 x^6-2187 x^7\right ) \log ^2(x)+\left (x+27 x^3+243 x^5+729 x^7\right ) \log ^3(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {81 e^x \left (-2+72 x-18 x^2-9 x^3+x \left (1-36 x+9 x^2\right ) \log (x)\right )}{x \left (9 x (4+x)-\left (1+9 x^2\right ) \log (x)\right )^3} \, dx\\ &=81 \int \frac {e^x \left (-2+72 x-18 x^2-9 x^3+x \left (1-36 x+9 x^2\right ) \log (x)\right )}{x \left (9 x (4+x)-\left (1+9 x^2\right ) \log (x)\right )^3} \, dx\\ &=81 \int \left (\frac {2 e^x \left (1-36 x+324 x^3+81 x^4\right )}{x \left (1+9 x^2\right ) \left (-36 x-9 x^2+\log (x)+9 x^2 \log (x)\right )^3}+\frac {e^x \left (-1+36 x-9 x^2\right )}{\left (1+9 x^2\right ) \left (-36 x-9 x^2+\log (x)+9 x^2 \log (x)\right )^2}\right ) \, dx\\ &=81 \int \frac {e^x \left (-1+36 x-9 x^2\right )}{\left (1+9 x^2\right ) \left (-36 x-9 x^2+\log (x)+9 x^2 \log (x)\right )^2} \, dx+162 \int \frac {e^x \left (1-36 x+324 x^3+81 x^4\right )}{x \left (1+9 x^2\right ) \left (-36 x-9 x^2+\log (x)+9 x^2 \log (x)\right )^3} \, dx\\ &=81 \int \left (-\frac {e^x}{\left (-36 x-9 x^2+\log (x)+9 x^2 \log (x)\right )^2}+\frac {36 e^x x}{\left (1+9 x^2\right ) \left (-36 x-9 x^2+\log (x)+9 x^2 \log (x)\right )^2}\right ) \, dx+162 \int \left (\frac {36 e^x}{\left (-36 x-9 x^2+\log (x)+9 x^2 \log (x)\right )^3}+\frac {e^x}{x \left (-36 x-9 x^2+\log (x)+9 x^2 \log (x)\right )^3}+\frac {9 e^x x}{\left (-36 x-9 x^2+\log (x)+9 x^2 \log (x)\right )^3}-\frac {18 e^x (4+x)}{\left (1+9 x^2\right ) \left (-36 x-9 x^2+\log (x)+9 x^2 \log (x)\right )^3}\right ) \, dx\\ &=-\left (81 \int \frac {e^x}{\left (-36 x-9 x^2+\log (x)+9 x^2 \log (x)\right )^2} \, dx\right )+162 \int \frac {e^x}{x \left (-36 x-9 x^2+\log (x)+9 x^2 \log (x)\right )^3} \, dx+1458 \int \frac {e^x x}{\left (-36 x-9 x^2+\log (x)+9 x^2 \log (x)\right )^3} \, dx-2916 \int \frac {e^x (4+x)}{\left (1+9 x^2\right ) \left (-36 x-9 x^2+\log (x)+9 x^2 \log (x)\right )^3} \, dx+2916 \int \frac {e^x x}{\left (1+9 x^2\right ) \left (-36 x-9 x^2+\log (x)+9 x^2 \log (x)\right )^2} \, dx+5832 \int \frac {e^x}{\left (-36 x-9 x^2+\log (x)+9 x^2 \log (x)\right )^3} \, dx\\ &=-\left (81 \int \frac {e^x}{\left (-36 x-9 x^2+\log (x)+9 x^2 \log (x)\right )^2} \, dx\right )+162 \int \frac {e^x}{x \left (-36 x-9 x^2+\log (x)+9 x^2 \log (x)\right )^3} \, dx+1458 \int \frac {e^x x}{\left (-36 x-9 x^2+\log (x)+9 x^2 \log (x)\right )^3} \, dx-2916 \int \left (\frac {4 e^x}{\left (1+9 x^2\right ) \left (-36 x-9 x^2+\log (x)+9 x^2 \log (x)\right )^3}+\frac {e^x x}{\left (1+9 x^2\right ) \left (-36 x-9 x^2+\log (x)+9 x^2 \log (x)\right )^3}\right ) \, dx+2916 \int \left (-\frac {e^x}{6 (i-3 x) \left (-36 x-9 x^2+\log (x)+9 x^2 \log (x)\right )^2}+\frac {e^x}{6 (i+3 x) \left (-36 x-9 x^2+\log (x)+9 x^2 \log (x)\right )^2}\right ) \, dx+5832 \int \frac {e^x}{\left (-36 x-9 x^2+\log (x)+9 x^2 \log (x)\right )^3} \, dx\\ &=-\left (81 \int \frac {e^x}{\left (-36 x-9 x^2+\log (x)+9 x^2 \log (x)\right )^2} \, dx\right )+162 \int \frac {e^x}{x \left (-36 x-9 x^2+\log (x)+9 x^2 \log (x)\right )^3} \, dx-486 \int \frac {e^x}{(i-3 x) \left (-36 x-9 x^2+\log (x)+9 x^2 \log (x)\right )^2} \, dx+486 \int \frac {e^x}{(i+3 x) \left (-36 x-9 x^2+\log (x)+9 x^2 \log (x)\right )^2} \, dx+1458 \int \frac {e^x x}{\left (-36 x-9 x^2+\log (x)+9 x^2 \log (x)\right )^3} \, dx-2916 \int \frac {e^x x}{\left (1+9 x^2\right ) \left (-36 x-9 x^2+\log (x)+9 x^2 \log (x)\right )^3} \, dx+5832 \int \frac {e^x}{\left (-36 x-9 x^2+\log (x)+9 x^2 \log (x)\right )^3} \, dx-11664 \int \frac {e^x}{\left (1+9 x^2\right ) \left (-36 x-9 x^2+\log (x)+9 x^2 \log (x)\right )^3} \, dx\\ &=-\left (81 \int \frac {e^x}{\left (-36 x-9 x^2+\log (x)+9 x^2 \log (x)\right )^2} \, dx\right )+162 \int \frac {e^x}{x \left (-36 x-9 x^2+\log (x)+9 x^2 \log (x)\right )^3} \, dx-486 \int \frac {e^x}{(i-3 x) \left (-36 x-9 x^2+\log (x)+9 x^2 \log (x)\right )^2} \, dx+486 \int \frac {e^x}{(i+3 x) \left (-36 x-9 x^2+\log (x)+9 x^2 \log (x)\right )^2} \, dx+1458 \int \frac {e^x x}{\left (-36 x-9 x^2+\log (x)+9 x^2 \log (x)\right )^3} \, dx-2916 \int \left (-\frac {e^x}{6 (i-3 x) \left (-36 x-9 x^2+\log (x)+9 x^2 \log (x)\right )^3}+\frac {e^x}{6 (i+3 x) \left (-36 x-9 x^2+\log (x)+9 x^2 \log (x)\right )^3}\right ) \, dx+5832 \int \frac {e^x}{\left (-36 x-9 x^2+\log (x)+9 x^2 \log (x)\right )^3} \, dx-11664 \int \left (\frac {i e^x}{2 (i-3 x) \left (-36 x-9 x^2+\log (x)+9 x^2 \log (x)\right )^3}+\frac {i e^x}{2 (i+3 x) \left (-36 x-9 x^2+\log (x)+9 x^2 \log (x)\right )^3}\right ) \, dx\\ &=-\left (5832 i \int \frac {e^x}{(i-3 x) \left (-36 x-9 x^2+\log (x)+9 x^2 \log (x)\right )^3} \, dx\right )-5832 i \int \frac {e^x}{(i+3 x) \left (-36 x-9 x^2+\log (x)+9 x^2 \log (x)\right )^3} \, dx-81 \int \frac {e^x}{\left (-36 x-9 x^2+\log (x)+9 x^2 \log (x)\right )^2} \, dx+162 \int \frac {e^x}{x \left (-36 x-9 x^2+\log (x)+9 x^2 \log (x)\right )^3} \, dx+486 \int \frac {e^x}{(i-3 x) \left (-36 x-9 x^2+\log (x)+9 x^2 \log (x)\right )^3} \, dx-486 \int \frac {e^x}{(i+3 x) \left (-36 x-9 x^2+\log (x)+9 x^2 \log (x)\right )^3} \, dx-486 \int \frac {e^x}{(i-3 x) \left (-36 x-9 x^2+\log (x)+9 x^2 \log (x)\right )^2} \, dx+486 \int \frac {e^x}{(i+3 x) \left (-36 x-9 x^2+\log (x)+9 x^2 \log (x)\right )^2} \, dx+1458 \int \frac {e^x x}{\left (-36 x-9 x^2+\log (x)+9 x^2 \log (x)\right )^3} \, dx+5832 \int \frac {e^x}{\left (-36 x-9 x^2+\log (x)+9 x^2 \log (x)\right )^3} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.00, size = 25, normalized size = 1.00 \begin {gather*} -\frac {81 e^x}{\left (-36 x-9 x^2+\log (x)+9 x^2 \log (x)\right )^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.62, size = 60, normalized size = 2.40 \begin {gather*} -\frac {81 \, e^{x}}{81 \, x^{4} + 648 \, x^{3} + {\left (81 \, x^{4} + 18 \, x^{2} + 1\right )} \log \relax (x)^{2} + 1296 \, x^{2} - 18 \, {\left (9 \, x^{4} + 36 \, x^{3} + x^{2} + 4 \, x\right )} \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.19, size = 70, normalized size = 2.80 \begin {gather*} -\frac {81 \, e^{x}}{81 \, x^{4} \log \relax (x)^{2} - 162 \, x^{4} \log \relax (x) + 81 \, x^{4} - 648 \, x^{3} \log \relax (x) + 18 \, x^{2} \log \relax (x)^{2} + 648 \, x^{3} - 18 \, x^{2} \log \relax (x) + 1296 \, x^{2} - 72 \, x \log \relax (x) + \log \relax (x)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 25, normalized size = 1.00
method | result | size |
risch | \(-\frac {81 \,{\mathrm e}^{x}}{\left (9 x^{2} \ln \relax (x )-9 x^{2}+\ln \relax (x )-36 x \right )^{2}}\) | \(25\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.41, size = 60, normalized size = 2.40 \begin {gather*} -\frac {81 \, e^{x}}{81 \, x^{4} + 648 \, x^{3} + {\left (81 \, x^{4} + 18 \, x^{2} + 1\right )} \log \relax (x)^{2} + 1296 \, x^{2} - 18 \, {\left (9 \, x^{4} + 36 \, x^{3} + x^{2} + 4 \, x\right )} \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int -\frac {{\mathrm {e}}^x\,\left (729\,x^3+1458\,x^2-5832\,x+162\right )-{\mathrm {e}}^x\,\ln \relax (x)\,\left (729\,x^3-2916\,x^2+81\,x\right )}{{\ln \relax (x)}^2\,\left (2187\,x^7+8748\,x^6+486\,x^5+1944\,x^4+27\,x^3+108\,x^2\right )-{\ln \relax (x)}^3\,\left (729\,x^7+243\,x^5+27\,x^3+x\right )-\ln \relax (x)\,\left (2187\,x^7+17496\,x^6+35235\,x^5+1944\,x^4+3888\,x^3\right )+46656\,x^4+34992\,x^5+8748\,x^6+729\,x^7} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.54, size = 78, normalized size = 3.12 \begin {gather*} - \frac {81 e^{x}}{81 x^{4} \log {\relax (x )}^{2} - 162 x^{4} \log {\relax (x )} + 81 x^{4} - 648 x^{3} \log {\relax (x )} + 648 x^{3} + 18 x^{2} \log {\relax (x )}^{2} - 18 x^{2} \log {\relax (x )} + 1296 x^{2} - 72 x \log {\relax (x )} + \log {\relax (x )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________