Optimal. Leaf size=15 \[ \frac {4-\log (2+x)}{400 x} \]
________________________________________________________________________________________
Rubi [A] time = 0.15, antiderivative size = 19, normalized size of antiderivative = 1.27, number of steps used = 9, number of rules used = 7, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.259, Rules used = {1593, 6742, 77, 2395, 36, 29, 31} \begin {gather*} \frac {1}{100 x}-\frac {\log (x+2)}{400 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 29
Rule 31
Rule 36
Rule 77
Rule 1593
Rule 2395
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-8-5 x+(2+x) \log (2+x)}{x^2 (800+400 x)} \, dx\\ &=\int \left (\frac {-8-5 x}{400 x^2 (2+x)}+\frac {\log (2+x)}{400 x^2}\right ) \, dx\\ &=\frac {1}{400} \int \frac {-8-5 x}{x^2 (2+x)} \, dx+\frac {1}{400} \int \frac {\log (2+x)}{x^2} \, dx\\ &=-\frac {\log (2+x)}{400 x}+\frac {1}{400} \int \frac {1}{x (2+x)} \, dx+\frac {1}{400} \int \left (-\frac {4}{x^2}-\frac {1}{2 x}+\frac {1}{2 (2+x)}\right ) \, dx\\ &=\frac {1}{100 x}-\frac {\log (x)}{800}+\frac {1}{800} \log (2+x)-\frac {\log (2+x)}{400 x}+\frac {1}{800} \int \frac {1}{x} \, dx-\frac {1}{800} \int \frac {1}{2+x} \, dx\\ &=\frac {1}{100 x}-\frac {\log (2+x)}{400 x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 15, normalized size = 1.00 \begin {gather*} \frac {4-\log (2+x)}{400 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.72, size = 11, normalized size = 0.73 \begin {gather*} -\frac {\log \left (x + 2\right ) - 4}{400 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.20, size = 15, normalized size = 1.00 \begin {gather*} -\frac {\log \left (x + 2\right )}{400 \, x} + \frac {1}{100 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.14, size = 13, normalized size = 0.87
method | result | size |
norman | \(\frac {\frac {1}{100}-\frac {\ln \left (2+x \right )}{400}}{x}\) | \(13\) |
risch | \(-\frac {\ln \left (2+x \right )}{400 x}+\frac {1}{100 x}\) | \(16\) |
derivativedivides | \(-\frac {\ln \left (2+x \right ) \left (2+x \right )}{800 x}+\frac {\ln \left (2+x \right )}{800}+\frac {1}{100 x}\) | \(25\) |
default | \(-\frac {\ln \left (2+x \right ) \left (2+x \right )}{800 x}+\frac {\ln \left (2+x \right )}{800}+\frac {1}{100 x}\) | \(25\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.41, size = 24, normalized size = 1.60 \begin {gather*} -\frac {{\left (x + 2\right )} \log \left (x + 2\right )}{800 \, x} + \frac {1}{100 \, x} + \frac {1}{800} \, \log \left (x + 2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.10, size = 13, normalized size = 0.87 \begin {gather*} -\frac {\frac {\ln \left (x+2\right )}{400}-\frac {1}{100}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.12, size = 12, normalized size = 0.80 \begin {gather*} - \frac {\log {\left (x + 2 \right )}}{400 x} + \frac {1}{100 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________