Optimal. Leaf size=22 \[ -\frac {5 (4-x)}{3 \left (-1-e^{4/5}\right )}+x \]
________________________________________________________________________________________
Rubi [A] time = 0.01, antiderivative size = 23, normalized size of antiderivative = 1.05, number of steps used = 1, number of rules used = 1, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.048, Rules used = {8} \begin {gather*} -\frac {\left (2-3 e^{4/5}\right ) x}{3 \left (1+e^{4/5}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 8
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=-\frac {\left (2-3 e^{4/5}\right ) x}{3 \left (1+e^{4/5}\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.00, size = 34, normalized size = 1.55 \begin {gather*} -\frac {2 x}{3+3 e^{4/5}}+\frac {3 e^{4/5} x}{3+3 e^{4/5}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.46, size = 17, normalized size = 0.77 \begin {gather*} \frac {3 \, x e^{\frac {4}{5}} - 2 \, x}{3 \, {\left (e^{\frac {4}{5}} + 1\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.21, size = 15, normalized size = 0.68 \begin {gather*} \frac {x {\left (3 \, e^{\frac {4}{5}} - 2\right )}}{3 \, {\left (e^{\frac {4}{5}} + 1\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 16, normalized size = 0.73
method | result | size |
norman | \(\frac {\left (3 \,{\mathrm e}^{\frac {4}{5}}-2\right ) x}{3 \,{\mathrm e}^{\frac {4}{5}}+3}\) | \(16\) |
default | \(\frac {\left (3 \,{\mathrm e}^{\frac {4}{5}}-2\right ) x}{3 \,{\mathrm e}^{\frac {4}{5}}+3}\) | \(17\) |
risch | \(\frac {3 x \,{\mathrm e}^{\frac {4}{5}}}{3 \,{\mathrm e}^{\frac {4}{5}}+3}-\frac {2 x}{3 \,{\mathrm e}^{\frac {4}{5}}+3}\) | \(26\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.38, size = 15, normalized size = 0.68 \begin {gather*} \frac {x {\left (3 \, e^{\frac {4}{5}} - 2\right )}}{3 \, {\left (e^{\frac {4}{5}} + 1\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.00, size = 16, normalized size = 0.73 \begin {gather*} \frac {x\,\left (3\,{\mathrm {e}}^{4/5}-2\right )}{3\,{\mathrm {e}}^{4/5}+3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.05, size = 17, normalized size = 0.77 \begin {gather*} \frac {x \left (-2 + 3 e^{\frac {4}{5}}\right )}{3 + 3 e^{\frac {4}{5}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________