Optimal. Leaf size=25 \[ \frac {e^2 x}{-e^{3-2 e^4+6 x}+x+\log (2)} \]
________________________________________________________________________________________
Rubi [F] time = 2.13, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{5-2 e^4+6 x} (-1+6 x)+e^2 \log (2)}{e^{6-4 e^4+12 x}+x^2+e^{3-2 e^4+6 x} (-2 x-2 \log (2))+2 x \log (2)+\log ^2(2)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{5+2 e^4+6 x} (-1+6 x)+e^{2+4 e^4} \log (2)}{\left (e^{3+6 x}-e^{2 e^4} (x+\log (2))\right )^2} \, dx\\ &=\int \left (-\frac {e^{2+2 e^4} (-1+6 x)}{-e^{3+6 x}+e^{2 e^4} x+e^{2 e^4} \log (2)}+\frac {e^{2+4 e^4} x (-1+6 x+\log (64))}{\left (-e^{3+6 x}+e^{2 e^4} x+e^{2 e^4} \log (2)\right )^2}\right ) \, dx\\ &=-\left (e^{2+2 e^4} \int \frac {-1+6 x}{-e^{3+6 x}+e^{2 e^4} x+e^{2 e^4} \log (2)} \, dx\right )+e^{2+4 e^4} \int \frac {x (-1+6 x+\log (64))}{\left (-e^{3+6 x}+e^{2 e^4} x+e^{2 e^4} \log (2)\right )^2} \, dx\\ &=-\left (e^{2+2 e^4} \int \left (\frac {1}{e^{3+6 x}-e^{2 e^4} x-e^{2 e^4} \log (2)}+\frac {6 x}{-e^{3+6 x}+e^{2 e^4} x+e^{2 e^4} \log (2)}\right ) \, dx\right )+e^{2+4 e^4} \int \frac {x (-1+6 x+\log (64))}{\left (e^{3+6 x}-e^{2 e^4} (x+\log (2))\right )^2} \, dx\\ &=-\left (e^{2+2 e^4} \int \frac {1}{e^{3+6 x}-e^{2 e^4} x-e^{2 e^4} \log (2)} \, dx\right )-\left (6 e^{2+2 e^4}\right ) \int \frac {x}{-e^{3+6 x}+e^{2 e^4} x+e^{2 e^4} \log (2)} \, dx+e^{2+4 e^4} \int \left (\frac {6 x^2}{\left (-e^{3+6 x}+e^{2 e^4} x+e^{2 e^4} \log (2)\right )^2}+\frac {x (-1+\log (64))}{\left (-e^{3+6 x}+e^{2 e^4} x+e^{2 e^4} \log (2)\right )^2}\right ) \, dx\\ &=-\left (e^{2+2 e^4} \int \frac {1}{e^{3+6 x}-e^{2 e^4} (x+\log (2))} \, dx\right )-\left (6 e^{2+2 e^4}\right ) \int \frac {x}{-e^{3+6 x}+e^{2 e^4} x+e^{2 e^4} \log (2)} \, dx+\left (6 e^{2+4 e^4}\right ) \int \frac {x^2}{\left (-e^{3+6 x}+e^{2 e^4} x+e^{2 e^4} \log (2)\right )^2} \, dx-\left (e^{2+4 e^4} (1-\log (64))\right ) \int \frac {x}{\left (-e^{3+6 x}+e^{2 e^4} x+e^{2 e^4} \log (2)\right )^2} \, dx\\ &=-\left (e^{2+2 e^4} \int \frac {1}{e^{3+6 x}-e^{2 e^4} (x+\log (2))} \, dx\right )-\left (6 e^{2+2 e^4}\right ) \int \frac {x}{-e^{3+6 x}+e^{2 e^4} x+e^{2 e^4} \log (2)} \, dx+\left (6 e^{2+4 e^4}\right ) \int \frac {x^2}{\left (e^{3+6 x}-e^{2 e^4} (x+\log (2))\right )^2} \, dx-\left (e^{2+4 e^4} (1-\log (64))\right ) \int \frac {x}{\left (e^{3+6 x}-e^{2 e^4} (x+\log (2))\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.47, size = 35, normalized size = 1.40 \begin {gather*} \frac {e^{2+2 e^4} x}{-e^{3+6 x}+e^{2 e^4} (x+\log (2))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.55, size = 28, normalized size = 1.12 \begin {gather*} \frac {x e^{4}}{x e^{2} + e^{2} \log \relax (2) - e^{\left (6 \, x - 2 \, e^{4} + 5\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.19, size = 267, normalized size = 10.68 \begin {gather*} \frac {6 \, x^{3} e^{\left (2 \, e^{4} + 2\right )} + 12 \, x^{2} e^{\left (2 \, e^{4} + 2\right )} \log \relax (2) + 6 \, x e^{\left (2 \, e^{4} + 2\right )} \log \relax (2)^{2} - 6 \, x^{2} e^{\left (6 \, x + 5\right )} - x^{2} e^{\left (2 \, e^{4} + 2\right )} - 6 \, x e^{\left (6 \, x + 5\right )} \log \relax (2) - x e^{\left (2 \, e^{4} + 2\right )} \log \relax (2) + x e^{\left (6 \, x + 5\right )}}{6 \, x^{3} e^{\left (2 \, e^{4}\right )} + 18 \, x^{2} e^{\left (2 \, e^{4}\right )} \log \relax (2) + 18 \, x e^{\left (2 \, e^{4}\right )} \log \relax (2)^{2} + 6 \, e^{\left (2 \, e^{4}\right )} \log \relax (2)^{3} - 12 \, x^{2} e^{\left (6 \, x + 3\right )} - x^{2} e^{\left (2 \, e^{4}\right )} - 24 \, x e^{\left (6 \, x + 3\right )} \log \relax (2) - 2 \, x e^{\left (2 \, e^{4}\right )} \log \relax (2) - 12 \, e^{\left (6 \, x + 3\right )} \log \relax (2)^{2} - e^{\left (2 \, e^{4}\right )} \log \relax (2)^{2} + 6 \, x e^{\left (12 \, x - 2 \, e^{4} + 6\right )} + 2 \, x e^{\left (6 \, x + 3\right )} + 6 \, e^{\left (12 \, x - 2 \, e^{4} + 6\right )} \log \relax (2) + 2 \, e^{\left (6 \, x + 3\right )} \log \relax (2) - e^{\left (12 \, x - 2 \, e^{4} + 6\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.21, size = 23, normalized size = 0.92
method | result | size |
risch | \(\frac {x \,{\mathrm e}^{2}}{x +\ln \relax (2)-{\mathrm e}^{-2 \,{\mathrm e}^{4}+6 x +3}}\) | \(23\) |
norman | \(\frac {{\mathrm e}^{2} {\mathrm e}^{-2 \,{\mathrm e}^{4}+6 x +3}-{\mathrm e}^{2} \ln \relax (2)}{x +\ln \relax (2)-{\mathrm e}^{-2 \,{\mathrm e}^{4}+6 x +3}}\) | \(40\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.50, size = 35, normalized size = 1.40 \begin {gather*} \frac {x e^{\left (2 \, e^{4} + 2\right )}}{x e^{\left (2 \, e^{4}\right )} + e^{\left (2 \, e^{4}\right )} \log \relax (2) - e^{\left (6 \, x + 3\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.40, size = 23, normalized size = 0.92 \begin {gather*} \frac {x\,{\mathrm {e}}^2}{x+\ln \relax (2)-{\mathrm {e}}^{-2\,{\mathrm {e}}^4}\,{\mathrm {e}}^{6\,x}\,{\mathrm {e}}^3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 22, normalized size = 0.88 \begin {gather*} - \frac {x e^{2}}{- x + e^{6 x - 2 e^{4} + 3} - \log {\relax (2 )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________