Optimal. Leaf size=26 \[ \frac {e^{-3+x}}{x \left (5-e^{-e^8 x^2} x\right )} \]
________________________________________________________________________________________
Rubi [F] time = 2.86, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{x+2 e^8 x^2} (-5+5 x)+e^{x+e^8 x^2} \left (2 x-x^2-2 e^8 x^3\right )}{25 e^{3+2 e^8 x^2} x^2-10 e^{3+e^8 x^2} x^3+e^3 x^4} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{-3+x+e^8 x^2} \left (5 e^{e^8 x^2} (-1+x)-(-2+x) x-2 e^8 x^3\right )}{\left (5 e^{e^8 x^2}-x\right )^2 x^2} \, dx\\ &=\int \left (\frac {e^{-3+x+e^8 x^2} (-1+x)}{\left (5 e^{e^8 x^2}-x\right ) x^2}-\frac {e^{-3+x+e^8 x^2} \left (-1+2 e^8 x^2\right )}{x \left (-5 e^{e^8 x^2}+x\right )^2}\right ) \, dx\\ &=\int \frac {e^{-3+x+e^8 x^2} (-1+x)}{\left (5 e^{e^8 x^2}-x\right ) x^2} \, dx-\int \frac {e^{-3+x+e^8 x^2} \left (-1+2 e^8 x^2\right )}{x \left (-5 e^{e^8 x^2}+x\right )^2} \, dx\\ &=\int \left (-\frac {e^{-3+x+e^8 x^2}}{\left (5 e^{e^8 x^2}-x\right ) x^2}+\frac {e^{-3+x+e^8 x^2}}{\left (5 e^{e^8 x^2}-x\right ) x}\right ) \, dx-\int \left (\frac {2 e^{5+x+e^8 x^2} x}{\left (5 e^{e^8 x^2}-x\right )^2}-\frac {e^{-3+x+e^8 x^2}}{x \left (-5 e^{e^8 x^2}+x\right )^2}\right ) \, dx\\ &=-\left (2 \int \frac {e^{5+x+e^8 x^2} x}{\left (5 e^{e^8 x^2}-x\right )^2} \, dx\right )-\int \frac {e^{-3+x+e^8 x^2}}{\left (5 e^{e^8 x^2}-x\right ) x^2} \, dx+\int \frac {e^{-3+x+e^8 x^2}}{\left (5 e^{e^8 x^2}-x\right ) x} \, dx+\int \frac {e^{-3+x+e^8 x^2}}{x \left (-5 e^{e^8 x^2}+x\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.59, size = 33, normalized size = 1.27 \begin {gather*} \frac {e^{-3+x+e^8 x^2}}{\left (5 e^{e^8 x^2}-x\right ) x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.51, size = 45, normalized size = 1.73 \begin {gather*} -\frac {e^{\left (2 \, x^{2} e^{8} + 2 \, x\right )}}{x^{2} e^{\left (x^{2} e^{8} + x + 3\right )} - 5 \, x e^{\left (2 \, x^{2} e^{8} + x + 3\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {5 \, {\left (x - 1\right )} e^{\left (2 \, x^{2} e^{8} + x\right )} - {\left (2 \, x^{3} e^{8} + x^{2} - 2 \, x\right )} e^{\left (x^{2} e^{8} + x\right )}}{x^{4} e^{3} - 10 \, x^{3} e^{\left (x^{2} e^{8} + 3\right )} + 25 \, x^{2} e^{\left (2 \, x^{2} e^{8} + 3\right )}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.27, size = 30, normalized size = 1.15
method | result | size |
risch | \(\frac {{\mathrm e}^{x -3}}{5 x}-\frac {{\mathrm e}^{x -3}}{5 \left (x -5 \,{\mathrm e}^{x^{2} {\mathrm e}^{8}}\right )}\) | \(30\) |
norman | \(-\frac {{\mathrm e}^{x} {\mathrm e}^{-3} {\mathrm e}^{x^{2} {\mathrm e}^{8}}}{x \left (x -5 \,{\mathrm e}^{x^{2} {\mathrm e}^{8}}\right )}\) | \(36\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.43, size = 32, normalized size = 1.23 \begin {gather*} -\frac {e^{\left (x^{2} e^{8} + x\right )}}{x^{2} e^{3} - 5 \, x e^{\left (x^{2} e^{8} + 3\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.57, size = 50, normalized size = 1.92 \begin {gather*} \frac {{\mathrm {e}}^{x-3}}{5\,x}+\frac {{\mathrm {e}}^{-3}\,\left ({\mathrm {e}}^x-2\,x^2\,{\mathrm {e}}^{x+8}\right )}{5\,\left (x-5\,{\mathrm {e}}^{x^2\,{\mathrm {e}}^8}\right )\,\left (2\,x^2\,{\mathrm {e}}^8-1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.19, size = 32, normalized size = 1.23 \begin {gather*} \frac {e^{x}}{- 5 x e^{3} + 25 e^{3} e^{x^{2} e^{8}}} + \frac {e^{x}}{5 x e^{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________