Optimal. Leaf size=20 \[ 6 e^{-\frac {2 x}{e^4 \log \left (x+x^2\right )}} \log (x) \]
________________________________________________________________________________________
Rubi [B] time = 1.76, antiderivative size = 89, normalized size of antiderivative = 4.45, number of steps used = 4, number of rules used = 4, integrand size = 101, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.040, Rules used = {1593, 6688, 12, 2288} \begin {gather*} \frac {6 e^{-\frac {2 x}{e^4 \log (x (x+1))}-4} \log (x) (2 x-(x+1) \log (x (x+1))+1)}{(x+1) \left (\frac {2 x+1}{e^4 (x+1) \log ^2(x (x+1))}-\frac {1}{e^4 \log (x (x+1))}\right ) \log ^2(x (x+1))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 1593
Rule 2288
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\exp \left (-4+\frac {-2 x+e^4 \log \left (x+x^2\right ) \log (\log (x))}{e^4 \log \left (x+x^2\right )}\right ) \left (\left (12 x+24 x^2\right ) \log (x)+\left (-12 x-12 x^2\right ) \log (x) \log \left (x+x^2\right )+e^4 (6+6 x) \log ^2\left (x+x^2\right )\right )}{x (1+x) \log (x) \log ^2\left (x+x^2\right )} \, dx\\ &=\int \frac {6 e^{-4-\frac {2 x}{e^4 \log (x (1+x))}} \left (e^4 (1+x) \log ^2(x (1+x))-2 x \log (x) (-1-2 x+(1+x) \log (x (1+x)))\right )}{x (1+x) \log ^2(x (1+x))} \, dx\\ &=6 \int \frac {e^{-4-\frac {2 x}{e^4 \log (x (1+x))}} \left (e^4 (1+x) \log ^2(x (1+x))-2 x \log (x) (-1-2 x+(1+x) \log (x (1+x)))\right )}{x (1+x) \log ^2(x (1+x))} \, dx\\ &=\frac {6 e^{-4-\frac {2 x}{e^4 \log (x (1+x))}} \log (x) (1+2 x-(1+x) \log (x (1+x)))}{(1+x) \left (\frac {1+2 x}{e^4 (1+x) \log ^2(x (1+x))}-\frac {1}{e^4 \log (x (1+x))}\right ) \log ^2(x (1+x))}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 20, normalized size = 1.00 \begin {gather*} 6 e^{-\frac {2 x}{e^4 \log (x (1+x))}} \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.60, size = 42, normalized size = 2.10 \begin {gather*} 6 \, e^{\left (\frac {{\left (e^{4} \log \left (x^{2} + x\right ) \log \left (\log \relax (x)\right ) - 4 \, e^{4} \log \left (x^{2} + x\right ) - 2 \, x\right )} e^{\left (-4\right )}}{\log \left (x^{2} + x\right )} + 4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 1.52, size = 20, normalized size = 1.00 \begin {gather*} 6 \, e^{\left (-\frac {2 \, x e^{\left (-4\right )}}{\log \left (x^{2} + x\right )} + \log \left (\log \relax (x)\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [F] time = 0.05, size = 0, normalized size = 0.00 \[\int \frac {\left (\left (6 x +6\right ) {\mathrm e}^{4} \ln \left (x^{2}+x \right )^{2}+\left (-12 x^{2}-12 x \right ) \ln \relax (x ) \ln \left (x^{2}+x \right )+\left (24 x^{2}+12 x \right ) \ln \relax (x )\right ) {\mathrm e}^{\frac {\left ({\mathrm e}^{4} \ln \left (x^{2}+x \right ) \ln \left (\ln \relax (x )\right )-2 x \right ) {\mathrm e}^{-4}}{\ln \left (x^{2}+x \right )}} {\mathrm e}^{-4}}{\left (x^{2}+x \right ) \ln \relax (x ) \ln \left (x^{2}+x \right )^{2}}\, dx\]
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: RuntimeError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.05 \begin {gather*} \int \frac {{\mathrm {e}}^{-\frac {{\mathrm {e}}^{-4}\,\left (2\,x-\ln \left (x^2+x\right )\,\ln \left (\ln \relax (x)\right )\,{\mathrm {e}}^4\right )}{\ln \left (x^2+x\right )}}\,{\mathrm {e}}^{-4}\,\left ({\mathrm {e}}^4\,\left (6\,x+6\right )\,{\ln \left (x^2+x\right )}^2-\ln \relax (x)\,\left (12\,x^2+12\,x\right )\,\ln \left (x^2+x\right )+\ln \relax (x)\,\left (24\,x^2+12\,x\right )\right )}{{\ln \left (x^2+x\right )}^2\,\ln \relax (x)\,\left (x^2+x\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: SympifyError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________