Optimal. Leaf size=25 \[ \left (-1+e^{x-x^4 \log (x)} \left (1-(-5+x)^2\right )\right ) x \]
________________________________________________________________________________________
Rubi [F] time = 2.64, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \left (-1+e^{x-x^4 \log (x)} \left (-24-4 x+7 x^2-x^3+24 x^4-10 x^5+x^6+\left (96 x^4-40 x^5+4 x^6\right ) \log (x)\right )\right ) \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=-x+\int e^{x-x^4 \log (x)} \left (-24-4 x+7 x^2-x^3+24 x^4-10 x^5+x^6+\left (96 x^4-40 x^5+4 x^6\right ) \log (x)\right ) \, dx\\ &=-x+\int \left (-24 e^{x-x^4 \log (x)}-4 e^{x-x^4 \log (x)} x+7 e^{x-x^4 \log (x)} x^2-e^{x-x^4 \log (x)} x^3+24 e^{x-x^4 \log (x)} x^4-10 e^{x-x^4 \log (x)} x^5+e^{x-x^4 \log (x)} x^6+4 e^{x-x^4 \log (x)} x^4 \left (24-10 x+x^2\right ) \log (x)\right ) \, dx\\ &=-x-4 \int e^{x-x^4 \log (x)} x \, dx+4 \int e^{x-x^4 \log (x)} x^4 \left (24-10 x+x^2\right ) \log (x) \, dx+7 \int e^{x-x^4 \log (x)} x^2 \, dx-10 \int e^{x-x^4 \log (x)} x^5 \, dx-24 \int e^{x-x^4 \log (x)} \, dx+24 \int e^{x-x^4 \log (x)} x^4 \, dx-\int e^{x-x^4 \log (x)} x^3 \, dx+\int e^{x-x^4 \log (x)} x^6 \, dx\\ &=-x-4 \int e^{x-x^4 \log (x)} x \, dx+4 \int \left (24 e^{x-x^4 \log (x)} x^4 \log (x)-10 e^{x-x^4 \log (x)} x^5 \log (x)+e^{x-x^4 \log (x)} x^6 \log (x)\right ) \, dx+7 \int e^{x-x^4 \log (x)} x^2 \, dx-10 \int e^{x-x^4 \log (x)} x^5 \, dx-24 \int e^{x-x^4 \log (x)} \, dx+24 \int e^{x-x^4 \log (x)} x^4 \, dx-\int e^{x-x^4 \log (x)} x^3 \, dx+\int e^{x-x^4 \log (x)} x^6 \, dx\\ &=-x-4 \int e^{x-x^4 \log (x)} x \, dx+4 \int e^{x-x^4 \log (x)} x^6 \log (x) \, dx+7 \int e^{x-x^4 \log (x)} x^2 \, dx-10 \int e^{x-x^4 \log (x)} x^5 \, dx-24 \int e^{x-x^4 \log (x)} \, dx+24 \int e^{x-x^4 \log (x)} x^4 \, dx-40 \int e^{x-x^4 \log (x)} x^5 \log (x) \, dx+96 \int e^{x-x^4 \log (x)} x^4 \log (x) \, dx-\int e^{x-x^4 \log (x)} x^3 \, dx+\int e^{x-x^4 \log (x)} x^6 \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 2.28, size = 26, normalized size = 1.04 \begin {gather*} -x-e^x x^{1-x^4} \left (24-10 x+x^2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.61, size = 28, normalized size = 1.12 \begin {gather*} -{\left (x^{3} - 10 \, x^{2} + 24 \, x\right )} e^{\left (-x^{4} \log \relax (x) + x\right )} - x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int {\left (x^{6} - 10 \, x^{5} + 24 \, x^{4} - x^{3} + 7 \, x^{2} + 4 \, {\left (x^{6} - 10 \, x^{5} + 24 \, x^{4}\right )} \log \relax (x) - 4 \, x - 24\right )} e^{\left (-x^{4} \log \relax (x) + x\right )} - 1\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 25, normalized size = 1.00
method | result | size |
risch | \(-x \left (x^{2}-10 x +24\right ) x^{-x^{4}} {\mathrm e}^{x}-x\) | \(25\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 28, normalized size = 1.12 \begin {gather*} -{\left (x^{3} - 10 \, x^{2} + 24 \, x\right )} e^{\left (-x^{4} \log \relax (x) + x\right )} - x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.12, size = 27, normalized size = 1.08 \begin {gather*} -x-\frac {{\mathrm {e}}^x\,\left (x^3-10\,x^2+24\,x\right )}{x^{x^4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.34, size = 22, normalized size = 0.88 \begin {gather*} - x + \left (- x^{3} + 10 x^{2} - 24 x\right ) e^{- x^{4} \log {\relax (x )} + x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________