Optimal. Leaf size=13 \[ \log \left (\frac {4 \log \left (\frac {\log (x)}{x}\right )}{x^2}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.20, antiderivative size = 13, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, integrand size = 34, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.059, Rules used = {6742, 6684} \begin {gather*} \log \left (\log \left (\frac {\log (x)}{x}\right )\right )-2 \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6684
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {2}{x}+\frac {1-\log (x)}{x \log (x) \log \left (\frac {\log (x)}{x}\right )}\right ) \, dx\\ &=-2 \log (x)+\int \frac {1-\log (x)}{x \log (x) \log \left (\frac {\log (x)}{x}\right )} \, dx\\ &=-2 \log (x)+\log \left (\log \left (\frac {\log (x)}{x}\right )\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 13, normalized size = 1.00 \begin {gather*} -2 \log (x)+\log \left (\log \left (\frac {\log (x)}{x}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.68, size = 13, normalized size = 1.00 \begin {gather*} -2 \, \log \relax (x) + \log \left (\log \left (\frac {\log \relax (x)}{x}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 14, normalized size = 1.08 \begin {gather*} -2 \, \log \relax (x) + \log \left (\log \relax (x) - \log \left (\log \relax (x)\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 14, normalized size = 1.08
method | result | size |
norman | \(-2 \ln \relax (x )+\ln \left (\ln \left (\frac {\ln \relax (x )}{x}\right )\right )\) | \(14\) |
risch | \(-2 \ln \relax (x )+\ln \left (\ln \left (\ln \relax (x )\right )-\frac {i \left (\pi \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (i \ln \relax (x )\right ) \mathrm {csgn}\left (\frac {i \ln \relax (x )}{x}\right )-\pi \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i \ln \relax (x )}{x}\right )^{2}-\pi \,\mathrm {csgn}\left (i \ln \relax (x )\right ) \mathrm {csgn}\left (\frac {i \ln \relax (x )}{x}\right )^{2}+\pi \mathrm {csgn}\left (\frac {i \ln \relax (x )}{x}\right )^{3}-2 i \ln \relax (x )\right )}{2}\right )\) | \(98\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.38, size = 14, normalized size = 1.08 \begin {gather*} -2 \, \log \relax (x) + \log \left (-\log \relax (x) + \log \left (\log \relax (x)\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.44, size = 13, normalized size = 1.00 \begin {gather*} \ln \left (\ln \left (\frac {\ln \relax (x)}{x}\right )\right )-2\,\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.28, size = 12, normalized size = 0.92 \begin {gather*} - 2 \log {\relax (x )} + \log {\left (\log {\left (\frac {\log {\relax (x )}}{x} \right )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________