Optimal. Leaf size=26 \[ \frac {32 e^{-2 x} \log ^2(x)}{3 x^2 \log ^2\left (\frac {x^2}{4}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 3.45, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{-2 x} \log (x) \left (-128 \log (x)+(64+(-64-64 x) \log (x)) \log \left (\frac {x^2}{4}\right )\right )}{3 x^3 \log ^3\left (\frac {x^2}{4}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{3} \int \frac {e^{-2 x} \log (x) \left (-128 \log (x)+(64+(-64-64 x) \log (x)) \log \left (\frac {x^2}{4}\right )\right )}{x^3 \log ^3\left (\frac {x^2}{4}\right )} \, dx\\ &=\frac {1}{3} \int \left (-\frac {128 e^{-2 x} \log ^2(x)}{x^3 \log ^3\left (\frac {x^2}{4}\right )}-\frac {64 e^{-2 x} \log (x) (-1+\log (x)+x \log (x))}{x^3 \log ^2\left (\frac {x^2}{4}\right )}\right ) \, dx\\ &=-\left (\frac {64}{3} \int \frac {e^{-2 x} \log (x) (-1+\log (x)+x \log (x))}{x^3 \log ^2\left (\frac {x^2}{4}\right )} \, dx\right )-\frac {128}{3} \int \frac {e^{-2 x} \log ^2(x)}{x^3 \log ^3\left (\frac {x^2}{4}\right )} \, dx\\ &=-\left (\frac {64}{3} \int \left (-\frac {e^{-2 x} \log (x)}{x^3 \log ^2\left (\frac {x^2}{4}\right )}+\frac {e^{-2 x} \log ^2(x)}{x^3 \log ^2\left (\frac {x^2}{4}\right )}+\frac {e^{-2 x} \log ^2(x)}{x^2 \log ^2\left (\frac {x^2}{4}\right )}\right ) \, dx\right )-\frac {128}{3} \int \frac {e^{-2 x} \log ^2(x)}{x^3 \log ^3\left (\frac {x^2}{4}\right )} \, dx\\ &=\frac {64}{3} \int \frac {e^{-2 x} \log (x)}{x^3 \log ^2\left (\frac {x^2}{4}\right )} \, dx-\frac {64}{3} \int \frac {e^{-2 x} \log ^2(x)}{x^3 \log ^2\left (\frac {x^2}{4}\right )} \, dx-\frac {64}{3} \int \frac {e^{-2 x} \log ^2(x)}{x^2 \log ^2\left (\frac {x^2}{4}\right )} \, dx-\frac {128}{3} \int \frac {e^{-2 x} \log ^2(x)}{x^3 \log ^3\left (\frac {x^2}{4}\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.55, size = 26, normalized size = 1.00 \begin {gather*} \frac {32 e^{-2 x} \log ^2(x)}{3 x^2 \log ^2\left (\frac {x^2}{4}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.44, size = 26, normalized size = 1.00 \begin {gather*} \frac {32}{3} \, e^{\left (-2 \, x + 2 \, \log \left (-\frac {\log \relax (x)}{2 \, {\left (x \log \relax (2) - x \log \relax (x)\right )}}\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.68, size = 24, normalized size = 0.92 \begin {gather*} \frac {32}{3} \, e^{\left (-2 \, x + 2 \, \log \left (\frac {\log \relax (x)}{x \log \left (\frac {1}{4} \, x^{2}\right )}\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [F] time = 0.09, size = 0, normalized size = 0.00 \[\int \frac {\left (\left (\left (-64 x -64\right ) \ln \relax (x )+64\right ) \ln \left (\frac {x^{2}}{4}\right )-128 \ln \relax (x )\right ) \ln \relax (x ) {\mathrm e}^{-2 x}}{3 \ln \left (\frac {x^{2}}{4}\right )^{3} x^{3}}\, dx\]
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.52, size = 38, normalized size = 1.46 \begin {gather*} \frac {8 \, e^{\left (-2 \, x\right )} \log \relax (x)^{2}}{3 \, {\left (x^{2} \log \relax (2)^{2} - 2 \, x^{2} \log \relax (2) \log \relax (x) + x^{2} \log \relax (x)^{2}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int -\frac {{\mathrm {e}}^{2\,\ln \left (\frac {\ln \relax (x)}{x\,\ln \left (\frac {x^2}{4}\right )}\right )-2\,x}\,\left (128\,\ln \relax (x)+\ln \left (\frac {x^2}{4}\right )\,\left (\ln \relax (x)\,\left (64\,x+64\right )-64\right )\right )}{3\,x\,\ln \left (\frac {x^2}{4}\right )\,\ln \relax (x)} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.40, size = 42, normalized size = 1.62 \begin {gather*} \frac {8 e^{- 2 x} \log {\relax (x )}^{2}}{3 x^{2} \log {\relax (x )}^{2} - 6 x^{2} \log {\relax (2 )} \log {\relax (x )} + 3 x^{2} \log {\relax (2 )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________