Optimal. Leaf size=27 \[ \frac {e^{-3+e^2+\frac {8}{x}} \log (x)}{\left (e^2-x\right ) x^3} \]
________________________________________________________________________________________
Rubi [B] time = 3.37, antiderivative size = 272, normalized size of antiderivative = 10.07, number of steps used = 32, number of rules used = 12, integrand size = 88, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.136, Rules used = {1594, 27, 6688, 6742, 2222, 2210, 2228, 2178, 2212, 2209, 2223, 2554} \begin {gather*} \frac {e^{\frac {8}{x}+e^2-5} \log (x)}{x^3}-\frac {3 e^{\frac {8}{x}+e^2-5} \log (x)}{8 x^2}+\frac {\left (8+3 e^2\right ) e^{\frac {8}{x}+e^2-7} \log (x)}{8 x^2}-e^{\frac {8}{x}+e^2-11} \log (x)-\frac {3}{256} e^{\frac {8}{x}+e^2-5} \log (x)+\frac {e^{\frac {8}{x}+e^2-9} \log (x)}{e^2-x}+\frac {3 e^{\frac {8}{x}+e^2-5} \log (x)}{32 x}-\frac {\left (8+3 e^2\right ) e^{\frac {8}{x}+e^2-7} \log (x)}{32 x}+\frac {\left (4+e^2\right ) e^{\frac {8}{x}+e^2-9} \log (x)}{4 x}+\frac {1}{256} \left (8+3 e^2\right ) e^{\frac {8}{x}+e^2-7} \log (x)+\frac {1}{8} \left (8+e^2\right ) e^{\frac {8}{x}+e^2-11} \log (x)-\frac {1}{32} \left (4+e^2\right ) e^{\frac {8}{x}+e^2-9} \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 27
Rule 1594
Rule 2178
Rule 2209
Rule 2210
Rule 2212
Rule 2222
Rule 2223
Rule 2228
Rule 2554
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{\frac {8-3 x+e^2 x}{x}} \left (e^2 x-x^2\right )+e^{\frac {8-3 x+e^2 x}{x}} \left (e^2 (-8-3 x)+8 x+4 x^2\right ) \log (x)}{x^5 \left (e^4-2 e^2 x+x^2\right )} \, dx\\ &=\int \frac {e^{\frac {8-3 x+e^2 x}{x}} \left (e^2 x-x^2\right )+e^{\frac {8-3 x+e^2 x}{x}} \left (e^2 (-8-3 x)+8 x+4 x^2\right ) \log (x)}{x^5 \left (-e^2+x\right )^2} \, dx\\ &=\int \frac {e^{-3+e^2+\frac {8}{x}} \left (\left (e^2-x\right ) x+\left (4 x (2+x)-e^2 (8+3 x)\right ) \log (x)\right )}{\left (e^2-x\right )^2 x^5} \, dx\\ &=\int \left (\frac {e^{-3+e^2+\frac {8}{x}}}{\left (e^2-x\right ) x^4}+\frac {e^{-3+e^2+\frac {8}{x}} \left (-8 e^2+\left (8-3 e^2\right ) x+4 x^2\right ) \log (x)}{\left (e^2-x\right )^2 x^5}\right ) \, dx\\ &=\int \frac {e^{-3+e^2+\frac {8}{x}}}{\left (e^2-x\right ) x^4} \, dx+\int \frac {e^{-3+e^2+\frac {8}{x}} \left (-8 e^2+\left (8-3 e^2\right ) x+4 x^2\right ) \log (x)}{\left (e^2-x\right )^2 x^5} \, dx\\ &=-e^{-11+e^2+\frac {8}{x}} \log (x)-\frac {3}{256} e^{-5+e^2+\frac {8}{x}} \log (x)-\frac {1}{32} e^{-9+e^2+\frac {8}{x}} \left (4+e^2\right ) \log (x)+\frac {1}{8} e^{-11+e^2+\frac {8}{x}} \left (8+e^2\right ) \log (x)+\frac {1}{256} e^{-7+e^2+\frac {8}{x}} \left (8+3 e^2\right ) \log (x)+\frac {e^{-9+e^2+\frac {8}{x}} \log (x)}{e^2-x}+\frac {e^{-5+e^2+\frac {8}{x}} \log (x)}{x^3}-\frac {3 e^{-5+e^2+\frac {8}{x}} \log (x)}{8 x^2}+\frac {e^{-7+e^2+\frac {8}{x}} \left (8+3 e^2\right ) \log (x)}{8 x^2}+\frac {3 e^{-5+e^2+\frac {8}{x}} \log (x)}{32 x}+\frac {e^{-9+e^2+\frac {8}{x}} \left (4+e^2\right ) \log (x)}{4 x}-\frac {e^{-7+e^2+\frac {8}{x}} \left (8+3 e^2\right ) \log (x)}{32 x}+\int \left (\frac {e^{-11+e^2+\frac {8}{x}}}{e^2-x}+\frac {e^{-5+e^2+\frac {8}{x}}}{x^4}+\frac {e^{-7+e^2+\frac {8}{x}}}{x^3}+\frac {e^{-9+e^2+\frac {8}{x}}}{x^2}+\frac {e^{-11+e^2+\frac {8}{x}}}{x}\right ) \, dx-\int \frac {e^{-3+e^2+\frac {8}{x}}}{\left (e^2-x\right ) x^4} \, dx\\ &=-e^{-11+e^2+\frac {8}{x}} \log (x)-\frac {3}{256} e^{-5+e^2+\frac {8}{x}} \log (x)-\frac {1}{32} e^{-9+e^2+\frac {8}{x}} \left (4+e^2\right ) \log (x)+\frac {1}{8} e^{-11+e^2+\frac {8}{x}} \left (8+e^2\right ) \log (x)+\frac {1}{256} e^{-7+e^2+\frac {8}{x}} \left (8+3 e^2\right ) \log (x)+\frac {e^{-9+e^2+\frac {8}{x}} \log (x)}{e^2-x}+\frac {e^{-5+e^2+\frac {8}{x}} \log (x)}{x^3}-\frac {3 e^{-5+e^2+\frac {8}{x}} \log (x)}{8 x^2}+\frac {e^{-7+e^2+\frac {8}{x}} \left (8+3 e^2\right ) \log (x)}{8 x^2}+\frac {3 e^{-5+e^2+\frac {8}{x}} \log (x)}{32 x}+\frac {e^{-9+e^2+\frac {8}{x}} \left (4+e^2\right ) \log (x)}{4 x}-\frac {e^{-7+e^2+\frac {8}{x}} \left (8+3 e^2\right ) \log (x)}{32 x}-\int \left (\frac {e^{-11+e^2+\frac {8}{x}}}{e^2-x}+\frac {e^{-5+e^2+\frac {8}{x}}}{x^4}+\frac {e^{-7+e^2+\frac {8}{x}}}{x^3}+\frac {e^{-9+e^2+\frac {8}{x}}}{x^2}+\frac {e^{-11+e^2+\frac {8}{x}}}{x}\right ) \, dx+\int \frac {e^{-11+e^2+\frac {8}{x}}}{e^2-x} \, dx+\int \frac {e^{-5+e^2+\frac {8}{x}}}{x^4} \, dx+\int \frac {e^{-7+e^2+\frac {8}{x}}}{x^3} \, dx+\int \frac {e^{-9+e^2+\frac {8}{x}}}{x^2} \, dx+\int \frac {e^{-11+e^2+\frac {8}{x}}}{x} \, dx\\ &=-\frac {1}{8} e^{-9+e^2+\frac {8}{x}}-\frac {e^{-5+e^2+\frac {8}{x}}}{8 x^2}-\frac {e^{-7+e^2+\frac {8}{x}}}{8 x}-e^{-11+e^2} \text {Ei}\left (\frac {8}{x}\right )-e^{-11+e^2+\frac {8}{x}} \log (x)-\frac {3}{256} e^{-5+e^2+\frac {8}{x}} \log (x)-\frac {1}{32} e^{-9+e^2+\frac {8}{x}} \left (4+e^2\right ) \log (x)+\frac {1}{8} e^{-11+e^2+\frac {8}{x}} \left (8+e^2\right ) \log (x)+\frac {1}{256} e^{-7+e^2+\frac {8}{x}} \left (8+3 e^2\right ) \log (x)+\frac {e^{-9+e^2+\frac {8}{x}} \log (x)}{e^2-x}+\frac {e^{-5+e^2+\frac {8}{x}} \log (x)}{x^3}-\frac {3 e^{-5+e^2+\frac {8}{x}} \log (x)}{8 x^2}+\frac {e^{-7+e^2+\frac {8}{x}} \left (8+3 e^2\right ) \log (x)}{8 x^2}+\frac {3 e^{-5+e^2+\frac {8}{x}} \log (x)}{32 x}+\frac {e^{-9+e^2+\frac {8}{x}} \left (4+e^2\right ) \log (x)}{4 x}-\frac {e^{-7+e^2+\frac {8}{x}} \left (8+3 e^2\right ) \log (x)}{32 x}-\frac {1}{8} \int \frac {e^{-7+e^2+\frac {8}{x}}}{x^2} \, dx-\frac {1}{4} \int \frac {e^{-5+e^2+\frac {8}{x}}}{x^3} \, dx+e^2 \int \frac {e^{-11+e^2+\frac {8}{x}}}{\left (e^2-x\right ) x} \, dx-\int \frac {e^{-11+e^2+\frac {8}{x}}}{e^2-x} \, dx-\int \frac {e^{-5+e^2+\frac {8}{x}}}{x^4} \, dx-\int \frac {e^{-7+e^2+\frac {8}{x}}}{x^3} \, dx-\int \frac {e^{-9+e^2+\frac {8}{x}}}{x^2} \, dx-2 \int \frac {e^{-11+e^2+\frac {8}{x}}}{x} \, dx\\ &=\frac {1}{64} e^{-7+e^2+\frac {8}{x}}+\frac {e^{-5+e^2+\frac {8}{x}}}{32 x}+e^{-11+e^2} \text {Ei}\left (\frac {8}{x}\right )-e^{-11+e^2+\frac {8}{x}} \log (x)-\frac {3}{256} e^{-5+e^2+\frac {8}{x}} \log (x)-\frac {1}{32} e^{-9+e^2+\frac {8}{x}} \left (4+e^2\right ) \log (x)+\frac {1}{8} e^{-11+e^2+\frac {8}{x}} \left (8+e^2\right ) \log (x)+\frac {1}{256} e^{-7+e^2+\frac {8}{x}} \left (8+3 e^2\right ) \log (x)+\frac {e^{-9+e^2+\frac {8}{x}} \log (x)}{e^2-x}+\frac {e^{-5+e^2+\frac {8}{x}} \log (x)}{x^3}-\frac {3 e^{-5+e^2+\frac {8}{x}} \log (x)}{8 x^2}+\frac {e^{-7+e^2+\frac {8}{x}} \left (8+3 e^2\right ) \log (x)}{8 x^2}+\frac {3 e^{-5+e^2+\frac {8}{x}} \log (x)}{32 x}+\frac {e^{-9+e^2+\frac {8}{x}} \left (4+e^2\right ) \log (x)}{4 x}-\frac {e^{-7+e^2+\frac {8}{x}} \left (8+3 e^2\right ) \log (x)}{32 x}+\frac {1}{32} \int \frac {e^{-5+e^2+\frac {8}{x}}}{x^2} \, dx+\frac {1}{8} \int \frac {e^{-7+e^2+\frac {8}{x}}}{x^2} \, dx+\frac {1}{4} \int \frac {e^{-5+e^2+\frac {8}{x}}}{x^3} \, dx-e^2 \int \frac {e^{-11+e^2+\frac {8}{x}}}{\left (e^2-x\right ) x} \, dx+\int \frac {e^{-11+e^2+\frac {8}{x}}}{x} \, dx-\operatorname {Subst}\left (\int \frac {e^{-11+\frac {8}{e^2}+e^2+\frac {8 x}{e^2}}}{x} \, dx,x,\frac {e^2-x}{x}\right )\\ &=-\frac {1}{256} e^{-5+e^2+\frac {8}{x}}-e^{-11+\frac {8}{e^2}+e^2} \text {Ei}\left (-\frac {8}{e^2}+\frac {8}{x}\right )-e^{-11+e^2+\frac {8}{x}} \log (x)-\frac {3}{256} e^{-5+e^2+\frac {8}{x}} \log (x)-\frac {1}{32} e^{-9+e^2+\frac {8}{x}} \left (4+e^2\right ) \log (x)+\frac {1}{8} e^{-11+e^2+\frac {8}{x}} \left (8+e^2\right ) \log (x)+\frac {1}{256} e^{-7+e^2+\frac {8}{x}} \left (8+3 e^2\right ) \log (x)+\frac {e^{-9+e^2+\frac {8}{x}} \log (x)}{e^2-x}+\frac {e^{-5+e^2+\frac {8}{x}} \log (x)}{x^3}-\frac {3 e^{-5+e^2+\frac {8}{x}} \log (x)}{8 x^2}+\frac {e^{-7+e^2+\frac {8}{x}} \left (8+3 e^2\right ) \log (x)}{8 x^2}+\frac {3 e^{-5+e^2+\frac {8}{x}} \log (x)}{32 x}+\frac {e^{-9+e^2+\frac {8}{x}} \left (4+e^2\right ) \log (x)}{4 x}-\frac {e^{-7+e^2+\frac {8}{x}} \left (8+3 e^2\right ) \log (x)}{32 x}-\frac {1}{32} \int \frac {e^{-5+e^2+\frac {8}{x}}}{x^2} \, dx+\operatorname {Subst}\left (\int \frac {e^{-11+\frac {8}{e^2}+e^2+\frac {8 x}{e^2}}}{x} \, dx,x,\frac {e^2-x}{x}\right )\\ &=-e^{-11+e^2+\frac {8}{x}} \log (x)-\frac {3}{256} e^{-5+e^2+\frac {8}{x}} \log (x)-\frac {1}{32} e^{-9+e^2+\frac {8}{x}} \left (4+e^2\right ) \log (x)+\frac {1}{8} e^{-11+e^2+\frac {8}{x}} \left (8+e^2\right ) \log (x)+\frac {1}{256} e^{-7+e^2+\frac {8}{x}} \left (8+3 e^2\right ) \log (x)+\frac {e^{-9+e^2+\frac {8}{x}} \log (x)}{e^2-x}+\frac {e^{-5+e^2+\frac {8}{x}} \log (x)}{x^3}-\frac {3 e^{-5+e^2+\frac {8}{x}} \log (x)}{8 x^2}+\frac {e^{-7+e^2+\frac {8}{x}} \left (8+3 e^2\right ) \log (x)}{8 x^2}+\frac {3 e^{-5+e^2+\frac {8}{x}} \log (x)}{32 x}+\frac {e^{-9+e^2+\frac {8}{x}} \left (4+e^2\right ) \log (x)}{4 x}-\frac {e^{-7+e^2+\frac {8}{x}} \left (8+3 e^2\right ) \log (x)}{32 x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.51, size = 27, normalized size = 1.00 \begin {gather*} \frac {e^{-3+e^2+\frac {8}{x}} \log (x)}{\left (e^2-x\right ) x^3} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.68, size = 31, normalized size = 1.15 \begin {gather*} -\frac {e^{\left (\frac {x e^{2} - 3 \, x + 8}{x}\right )} \log \relax (x)}{x^{4} - x^{3} e^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.18, size = 34, normalized size = 1.26 \begin {gather*} -\frac {e^{\left (\frac {x e^{2} - x + 8}{x}\right )} \log \relax (x)}{x^{4} e^{2} - x^{3} e^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [F] time = 0.17, size = 0, normalized size = 0.00 \[\int \frac {\left (\left (-3 x -8\right ) {\mathrm e}^{2}+4 x^{2}+8 x \right ) {\mathrm e}^{\frac {{\mathrm e}^{2} x -3 x +8}{x}} \ln \relax (x )+\left ({\mathrm e}^{2} x -x^{2}\right ) {\mathrm e}^{\frac {{\mathrm e}^{2} x -3 x +8}{x}}}{x^{5} {\mathrm e}^{4}-2 x^{6} {\mathrm e}^{2}+x^{7}}\, dx\]
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.42, size = 29, normalized size = 1.07 \begin {gather*} -\frac {e^{\left (\frac {8}{x} + e^{2}\right )} \log \relax (x)}{x^{4} e^{3} - x^{3} e^{5}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int \frac {{\mathrm {e}}^{\frac {x\,{\mathrm {e}}^2-3\,x+8}{x}}\,\left (x\,{\mathrm {e}}^2-x^2\right )+{\mathrm {e}}^{\frac {x\,{\mathrm {e}}^2-3\,x+8}{x}}\,\ln \relax (x)\,\left (8\,x+4\,x^2-{\mathrm {e}}^2\,\left (3\,x+8\right )\right )}{x^7-2\,{\mathrm {e}}^2\,x^6+{\mathrm {e}}^4\,x^5} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.35, size = 27, normalized size = 1.00 \begin {gather*} - \frac {e^{\frac {- 3 x + x e^{2} + 8}{x}} \log {\relax (x )}}{x^{4} - x^{3} e^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________