Optimal. Leaf size=32 \[ e^{(-4+x) \left (x-\frac {3 \left (1-\frac {x}{e^3}+\frac {x}{8+x}\right )}{x}\right )}-x \]
________________________________________________________________________________________
Rubi [F] time = 7.33, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^3 \left (-64 x^2-16 x^3-x^4\right )+\exp \left (\frac {-96 x+12 x^2+3 x^3+e^3 \left (96-38 x^2+4 x^3+x^4\right )}{e^3 \left (8 x+x^2\right )}\right ) \left (192 x^2+48 x^3+3 x^4+e^3 \left (-768-192 x-304 x^2+64 x^3+28 x^4+2 x^5\right )\right )}{e^3 \left (64 x^2+16 x^3+x^4\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {e^3 \left (-64 x^2-16 x^3-x^4\right )+\exp \left (\frac {-96 x+12 x^2+3 x^3+e^3 \left (96-38 x^2+4 x^3+x^4\right )}{e^3 \left (8 x+x^2\right )}\right ) \left (192 x^2+48 x^3+3 x^4+e^3 \left (-768-192 x-304 x^2+64 x^3+28 x^4+2 x^5\right )\right )}{64 x^2+16 x^3+x^4} \, dx}{e^3}\\ &=\frac {\int \frac {e^3 \left (-64 x^2-16 x^3-x^4\right )+\exp \left (\frac {-96 x+12 x^2+3 x^3+e^3 \left (96-38 x^2+4 x^3+x^4\right )}{e^3 \left (8 x+x^2\right )}\right ) \left (192 x^2+48 x^3+3 x^4+e^3 \left (-768-192 x-304 x^2+64 x^3+28 x^4+2 x^5\right )\right )}{x^2 \left (64+16 x+x^2\right )} \, dx}{e^3}\\ &=\frac {\int \frac {e^3 \left (-64 x^2-16 x^3-x^4\right )+\exp \left (\frac {-96 x+12 x^2+3 x^3+e^3 \left (96-38 x^2+4 x^3+x^4\right )}{e^3 \left (8 x+x^2\right )}\right ) \left (192 x^2+48 x^3+3 x^4+e^3 \left (-768-192 x-304 x^2+64 x^3+28 x^4+2 x^5\right )\right )}{x^2 (8+x)^2} \, dx}{e^3}\\ &=\frac {\int \left (-e^3+\frac {\exp \left (\frac {(-4+x) \left (-24 e^3+6 \left (4-e^3\right ) x+\left (3+8 e^3\right ) x^2+e^3 x^3\right )}{e^3 x (8+x)}\right ) \left (-768 e^3-192 e^3 x+192 \left (1-\frac {19 e^3}{12}\right ) x^2+48 \left (1+\frac {4 e^3}{3}\right ) x^3+3 \left (1+\frac {28 e^3}{3}\right ) x^4+2 e^3 x^5\right )}{x^2 (8+x)^2}\right ) \, dx}{e^3}\\ &=-x+\frac {\int \frac {\exp \left (\frac {(-4+x) \left (-24 e^3+6 \left (4-e^3\right ) x+\left (3+8 e^3\right ) x^2+e^3 x^3\right )}{e^3 x (8+x)}\right ) \left (-768 e^3-192 e^3 x+192 \left (1-\frac {19 e^3}{12}\right ) x^2+48 \left (1+\frac {4 e^3}{3}\right ) x^3+3 \left (1+\frac {28 e^3}{3}\right ) x^4+2 e^3 x^5\right )}{x^2 (8+x)^2} \, dx}{e^3}\\ &=-x+\frac {\int \frac {\exp \left (\frac {(-4+x) \left (-24 e^3+6 \left (4-e^3\right ) x+\left (3+8 e^3\right ) x^2+e^3 x^3\right )}{e^3 x (8+x)}\right ) \left (3 x^2 (8+x)^2+2 e^3 \left (-384-96 x-152 x^2+32 x^3+14 x^4+x^5\right )\right )}{x^2 (8+x)^2} \, dx}{e^3}\\ &=-x+\frac {\int \left (3 \exp \left (\frac {(-4+x) \left (-24 e^3+6 \left (4-e^3\right ) x+\left (3+8 e^3\right ) x^2+e^3 x^3\right )}{e^3 x (8+x)}\right ) \left (1-\frac {4 e^3}{3}\right )-\frac {12 \exp \left (3+\frac {(-4+x) \left (-24 e^3+6 \left (4-e^3\right ) x+\left (3+8 e^3\right ) x^2+e^3 x^3\right )}{e^3 x (8+x)}\right )}{x^2}+2 \exp \left (3+\frac {(-4+x) \left (-24 e^3+6 \left (4-e^3\right ) x+\left (3+8 e^3\right ) x^2+e^3 x^3\right )}{e^3 x (8+x)}\right ) x-\frac {36 \exp \left (3+\frac {(-4+x) \left (-24 e^3+6 \left (4-e^3\right ) x+\left (3+8 e^3\right ) x^2+e^3 x^3\right )}{e^3 x (8+x)}\right )}{(8+x)^2}\right ) \, dx}{e^3}\\ &=-x+\frac {2 \int \exp \left (3+\frac {(-4+x) \left (-24 e^3+6 \left (4-e^3\right ) x+\left (3+8 e^3\right ) x^2+e^3 x^3\right )}{e^3 x (8+x)}\right ) x \, dx}{e^3}-\frac {12 \int \frac {\exp \left (3+\frac {(-4+x) \left (-24 e^3+6 \left (4-e^3\right ) x+\left (3+8 e^3\right ) x^2+e^3 x^3\right )}{e^3 x (8+x)}\right )}{x^2} \, dx}{e^3}-\frac {36 \int \frac {\exp \left (3+\frac {(-4+x) \left (-24 e^3+6 \left (4-e^3\right ) x+\left (3+8 e^3\right ) x^2+e^3 x^3\right )}{e^3 x (8+x)}\right )}{(8+x)^2} \, dx}{e^3}+\frac {\left (3-4 e^3\right ) \int \exp \left (\frac {(-4+x) \left (-24 e^3+6 \left (4-e^3\right ) x+\left (3+8 e^3\right ) x^2+e^3 x^3\right )}{e^3 x (8+x)}\right ) \, dx}{e^3}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.24, size = 48, normalized size = 1.50 \begin {gather*} e^{3-\frac {3 \left (4+3 e^3\right )}{e^3}+\frac {12}{x}-\frac {\left (-3+4 e^3\right ) x}{e^3}+x^2+\frac {36}{8+x}}-x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.65, size = 49, normalized size = 1.53 \begin {gather*} -x + e^{\left (\frac {{\left (3 \, x^{3} + 12 \, x^{2} + {\left (x^{4} + 4 \, x^{3} - 38 \, x^{2} + 96\right )} e^{3} - 96 \, x\right )} e^{\left (-3\right )}}{x^{2} + 8 \, x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 1.74, size = 67, normalized size = 2.09 \begin {gather*} -{\left (x e^{3} - e^{\left (\frac {x^{4} e^{3} + 4 \, x^{3} e^{3} + 3 \, x^{3} - 38 \, x^{2} e^{3} + 12 \, x^{2} - 96 \, x + 96 \, e^{3}}{x^{2} e^{3} + 8 \, x e^{3}} + 3\right )}\right )} e^{\left (-3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.42, size = 51, normalized size = 1.59
method | result | size |
risch | \(-x +{\mathrm e}^{\frac {\left (x -4\right ) \left (x^{3} {\mathrm e}^{3}+8 x^{2} {\mathrm e}^{3}-6 x \,{\mathrm e}^{3}+3 x^{2}-24 \,{\mathrm e}^{3}+24 x \right ) {\mathrm e}^{-3}}{x \left (x +8\right )}}\) | \(51\) |
norman | \(\frac {x^{2} {\mathrm e}^{\frac {\left (\left (x^{4}+4 x^{3}-38 x^{2}+96\right ) {\mathrm e}^{3}+3 x^{3}+12 x^{2}-96 x \right ) {\mathrm e}^{-3}}{x^{2}+8 x}}+64 x -x^{3}+8 x \,{\mathrm e}^{\frac {\left (\left (x^{4}+4 x^{3}-38 x^{2}+96\right ) {\mathrm e}^{3}+3 x^{3}+12 x^{2}-96 x \right ) {\mathrm e}^{-3}}{x^{2}+8 x}}}{x \left (x +8\right )}\) | \(120\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 1.97, size = 80, normalized size = 2.50 \begin {gather*} -{\left ({\left (x - \frac {64}{x + 8} - 16 \, \log \left (x + 8\right )\right )} e^{3} + 16 \, {\left (\frac {8}{x + 8} + \log \left (x + 8\right )\right )} e^{3} - \frac {64 \, e^{3}}{x + 8} - e^{\left (x^{2} + 3 \, x e^{\left (-3\right )} - 4 \, x + \frac {36}{x + 8} + \frac {12}{x} - 12 \, e^{\left (-3\right )} - 3\right )}\right )} e^{\left (-3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.96, size = 110, normalized size = 3.44 \begin {gather*} {\mathrm {e}}^{\frac {x^4}{x^2+8\,x}}\,{\mathrm {e}}^{\frac {4\,x^3}{x^2+8\,x}}\,{\mathrm {e}}^{-\frac {38\,x^2}{x^2+8\,x}}\,{\mathrm {e}}^{-\frac {96\,x\,{\mathrm {e}}^{-3}}{x^2+8\,x}}\,{\mathrm {e}}^{\frac {96}{x^2+8\,x}}\,{\mathrm {e}}^{\frac {3\,x^3\,{\mathrm {e}}^{-3}}{x^2+8\,x}}\,{\mathrm {e}}^{\frac {12\,x^2\,{\mathrm {e}}^{-3}}{x^2+8\,x}}-x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.54, size = 44, normalized size = 1.38 \begin {gather*} - x + e^{\frac {3 x^{3} + 12 x^{2} - 96 x + \left (x^{4} + 4 x^{3} - 38 x^{2} + 96\right ) e^{3}}{\left (x^{2} + 8 x\right ) e^{3}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________