Optimal. Leaf size=23 \[ -e^{e^{4-x}} \log \left (5 \left (-4+e^2+\log (5)\right ) \log (x)\right ) \]
________________________________________________________________________________________
Rubi [A] time = 1.09, antiderivative size = 27, normalized size of antiderivative = 1.17, number of steps used = 4, number of rules used = 5, integrand size = 53, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.094, Rules used = {6741, 6742, 2282, 2194, 2555} \begin {gather*} -e^{e^{4-x}} \log \left (-5 \left (4-e^2-\log (5)\right ) \log (x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2194
Rule 2282
Rule 2555
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{e^{4-x}-x} \left (-e^x+e^4 x \log (x) \log \left (5 \left (-4+e^2+\log (5)\right ) \log (x)\right )\right )}{x \log (x)} \, dx\\ &=\int \left (-\frac {e^{e^{4-x}}}{x \log (x)}+e^{4+e^{4-x}-x} \log \left (5 \left (-4+e^2+\log (5)\right ) \log (x)\right )\right ) \, dx\\ &=-\int \frac {e^{e^{4-x}}}{x \log (x)} \, dx+\int e^{4+e^{4-x}-x} \log \left (5 \left (-4+e^2+\log (5)\right ) \log (x)\right ) \, dx\\ &=-e^{e^{4-x}} \log \left (-5 \left (4-e^2-\log (5)\right ) \log (x)\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.19, size = 23, normalized size = 1.00 \begin {gather*} -e^{e^{4-x}} \log \left (5 \left (-4+e^2+\log (5)\right ) \log (x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.73, size = 20, normalized size = 0.87 \begin {gather*} -e^{\left (e^{\left (-x + 4\right )}\right )} \log \left (5 \, {\left (e^{2} + \log \relax (5) - 4\right )} \log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.26, size = 40, normalized size = 1.74 \begin {gather*} -e^{\left (e^{\left (-x + 4\right )}\right )} \log \relax (5) - e^{\left (e^{\left (-x + 4\right )}\right )} \log \left (e^{2} + \log \relax (5) - 4\right ) - e^{\left (e^{\left (-x + 4\right )}\right )} \log \left (\log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 24, normalized size = 1.04
method | result | size |
risch | \(-{\mathrm e}^{{\mathrm e}^{-x +4}} \ln \left (\left (5 \ln \relax (5)+5 \,{\mathrm e}^{2}-20\right ) \ln \relax (x )\right )\) | \(24\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.49, size = 22, normalized size = 0.96 \begin {gather*} -{\left (\log \relax (5) + \log \left (e^{2} + \log \relax (5) - 4\right ) + \log \left (\log \relax (x)\right )\right )} e^{\left (e^{\left (-x + 4\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.37, size = 25, normalized size = 1.09 \begin {gather*} -{\mathrm {e}}^{{\mathrm {e}}^{-x}\,{\mathrm {e}}^4}\,\left (\ln \left (\ln \relax (x)\right )+\ln \left (5\,{\mathrm {e}}^2+5\,\ln \relax (5)-20\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________