Optimal. Leaf size=34 \[ e^{2+e^{e^{e^x}-x} (-4+x)-x}+\frac {2-x}{-4+x} \]
________________________________________________________________________________________
Rubi [F] time = 2.57, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {2+e^{2+e^{e^{e^x}-x} (-4+x)-x} \left (-16+8 x-x^2+e^{e^{e^x}-x} \left (80-56 x+13 x^2-x^3+e^{e^x+x} \left (-64+48 x-12 x^2+x^3\right )\right )\right )}{16-8 x+x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2+e^{2+e^{e^{e^x}-x} (-4+x)-x} \left (-16+8 x-x^2+e^{e^{e^x}-x} \left (80-56 x+13 x^2-x^3+e^{e^x+x} \left (-64+48 x-12 x^2+x^3\right )\right )\right )}{(-4+x)^2} \, dx\\ &=\int \left (e^{2+e^{e^{e^x}-x} (-4+x)-2 x} \left (-e^x-e^{e^{e^x}} (-5+x)+e^{e^{e^x}+e^x+x} (-4+x)\right )+\frac {2}{(-4+x)^2}\right ) \, dx\\ &=\frac {2}{4-x}+\int e^{2+e^{e^{e^x}-x} (-4+x)-2 x} \left (-e^x-e^{e^{e^x}} (-5+x)+e^{e^{e^x}+e^x+x} (-4+x)\right ) \, dx\\ &=\frac {2}{4-x}+\int \left (-e^{2+e^{e^{e^x}-x} (-4+x)-x}-e^{2+e^{e^x}+e^{e^{e^x}-x} (-4+x)-2 x} (-5+x)+e^{2+e^{e^x}+e^x+e^{e^{e^x}-x} (-4+x)-x} (-4+x)\right ) \, dx\\ &=\frac {2}{4-x}-\int e^{2+e^{e^{e^x}-x} (-4+x)-x} \, dx-\int e^{2+e^{e^x}+e^{e^{e^x}-x} (-4+x)-2 x} (-5+x) \, dx+\int e^{2+e^{e^x}+e^x+e^{e^{e^x}-x} (-4+x)-x} (-4+x) \, dx\\ &=\frac {2}{4-x}-\int e^{2+e^{e^{e^x}-x} (-4+x)-x} \, dx-\int \left (-5 e^{2+e^{e^x}+e^{e^{e^x}-x} (-4+x)-2 x}+e^{2+e^{e^x}+e^{e^{e^x}-x} (-4+x)-2 x} x\right ) \, dx+\int \left (-4 e^{2+e^{e^x}+e^x+e^{e^{e^x}-x} (-4+x)-x}+e^{2+e^{e^x}+e^x+e^{e^{e^x}-x} (-4+x)-x} x\right ) \, dx\\ &=\frac {2}{4-x}-4 \int e^{2+e^{e^x}+e^x+e^{e^{e^x}-x} (-4+x)-x} \, dx+5 \int e^{2+e^{e^x}+e^{e^{e^x}-x} (-4+x)-2 x} \, dx-\int e^{2+e^{e^{e^x}-x} (-4+x)-x} \, dx-\int e^{2+e^{e^x}+e^{e^{e^x}-x} (-4+x)-2 x} x \, dx+\int e^{2+e^{e^x}+e^x+e^{e^{e^x}-x} (-4+x)-x} x \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.47, size = 30, normalized size = 0.88 \begin {gather*} e^{2+e^{e^{e^x}-x} (-4+x)-x}-\frac {2}{-4+x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.59, size = 41, normalized size = 1.21 \begin {gather*} \frac {{\left (x - 4\right )} e^{\left ({\left (x - 4\right )} e^{\left (-{\left (x e^{x} - e^{\left (x + e^{x}\right )}\right )} e^{\left (-x\right )}\right )} - x + 2\right )} - 2}{x - 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {{\left (x^{2} + {\left (x^{3} - 13 \, x^{2} - {\left (x^{3} - 12 \, x^{2} + 48 \, x - 64\right )} e^{\left (x + e^{x}\right )} + 56 \, x - 80\right )} e^{\left (-x + e^{\left (e^{x}\right )}\right )} - 8 \, x + 16\right )} e^{\left ({\left (x - 4\right )} e^{\left (-x + e^{\left (e^{x}\right )}\right )} - x + 2\right )} - 2}{x^{2} - 8 \, x + 16}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.40, size = 35, normalized size = 1.03
method | result | size |
risch | \(-\frac {2}{x -4}+{\mathrm e}^{{\mathrm e}^{{\mathrm e}^{{\mathrm e}^{x}}-x} x -4 \,{\mathrm e}^{{\mathrm e}^{{\mathrm e}^{x}}-x}-x +2}\) | \(35\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.58, size = 34, normalized size = 1.00 \begin {gather*} -\frac {2}{x - 4} + e^{\left (x e^{\left (-x + e^{\left (e^{x}\right )}\right )} - x - 4 \, e^{\left (-x + e^{\left (e^{x}\right )}\right )} + 2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.20, size = 37, normalized size = 1.09 \begin {gather*} {\mathrm {e}}^{x\,{\mathrm {e}}^{-x}\,{\mathrm {e}}^{{\mathrm {e}}^{{\mathrm {e}}^x}}}\,{\mathrm {e}}^{-x}\,{\mathrm {e}}^2\,{\mathrm {e}}^{-4\,{\mathrm {e}}^{-x}\,{\mathrm {e}}^{{\mathrm {e}}^{{\mathrm {e}}^x}}}-\frac {2}{x-4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 1.88, size = 20, normalized size = 0.59 \begin {gather*} e^{- x + \left (x - 4\right ) e^{- x + e^{e^{x}}} + 2} - \frac {2}{x - 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________