Optimal. Leaf size=28 \[ 4 e^{\frac {(3+2 x)^2}{x^2}} \left (5-e^5\right )+\frac {50}{x} \]
________________________________________________________________________________________
Rubi [A] time = 0.14, antiderivative size = 28, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, integrand size = 39, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.051, Rules used = {14, 6706} \begin {gather*} 4 \left (5-e^5\right ) e^{\frac {(2 x+3)^2}{x^2}}+\frac {50}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 6706
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {50}{x^2}+\frac {24 e^{\frac {(3+2 x)^2}{x^2}} \left (-5+e^5\right ) (3+2 x)}{x^3}\right ) \, dx\\ &=\frac {50}{x}-\left (24 \left (5-e^5\right )\right ) \int \frac {e^{\frac {(3+2 x)^2}{x^2}} (3+2 x)}{x^3} \, dx\\ &=4 e^{\frac {(3+2 x)^2}{x^2}} \left (5-e^5\right )+\frac {50}{x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.11, size = 27, normalized size = 0.96 \begin {gather*} -4 e^{4+\frac {9}{x^2}+\frac {12}{x}} \left (-5+e^5\right )+\frac {50}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.69, size = 32, normalized size = 1.14 \begin {gather*} -\frac {2 \, {\left (2 \, {\left (x e^{5} - 5 \, x\right )} e^{\left (\frac {4 \, x^{2} + 12 \, x + 9}{x^{2}}\right )} - 25\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.13, size = 92, normalized size = 3.29 \begin {gather*} \frac {2 \, {\left (12 \, x e^{\left (\frac {3 \, {\left (3 \, x^{2} + 4 \, x + 3\right )}}{x^{2}}\right )} + 25 \, e^{\left (\frac {4 \, x^{2} + 12 \, x + 9}{x^{2}}\right )} + 18 \, e^{\left (\frac {3 \, {\left (3 \, x^{2} + 4 \, x + 3\right )}}{x^{2}}\right )}\right )} e^{\left (-\frac {4 \, x^{2} + 12 \, x + 9}{x^{2}}\right )}}{x} + 20 \, e^{\left (\frac {12}{x} + \frac {9}{x^{2}} + 4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 34, normalized size = 1.21
method | result | size |
norman | \(\frac {\left (-4 \,{\mathrm e}^{5}+20\right ) x^{2} {\mathrm e}^{\frac {4 x^{2}+12 x +9}{x^{2}}}+50 x}{x^{2}}\) | \(34\) |
derivativedivides | \(\frac {50}{x}+20 \,{\mathrm e}^{4+\frac {9}{x^{2}}+\frac {12}{x}}-4 \,{\mathrm e}^{\frac {9}{x^{2}}+\frac {12}{x}+9}\) | \(37\) |
default | \(\frac {50}{x}+20 \,{\mathrm e}^{4+\frac {9}{x^{2}}+\frac {12}{x}}-4 \,{\mathrm e}^{\frac {9}{x^{2}}+\frac {12}{x}+9}\) | \(37\) |
risch | \(\frac {50}{x}-4 \,{\mathrm e}^{\frac {\left (2 x +3\right )^{2}}{x^{2}}} {\mathrm e}^{5}+20 \,{\mathrm e}^{\frac {\left (2 x +3\right )^{2}}{x^{2}}}\) | \(37\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.41, size = 27, normalized size = 0.96 \begin {gather*} -4 \, {\left (e^{9} - 5 \, e^{4}\right )} e^{\left (\frac {12}{x} + \frac {9}{x^{2}}\right )} + \frac {50}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.18, size = 27, normalized size = 0.96 \begin {gather*} \frac {50}{x}-{\mathrm {e}}^{\frac {12}{x}+\frac {9}{x^2}+4}\,\left (4\,{\mathrm {e}}^5-20\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.25, size = 24, normalized size = 0.86 \begin {gather*} \left (20 - 4 e^{5}\right ) e^{\frac {4 x^{2} + 12 x + 9}{x^{2}}} + \frac {50}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________