Optimal. Leaf size=24 \[ -1+e^5-x-\frac {2 e^{-2 x}}{\left (1+\frac {5 x}{2}\right )^2} \]
________________________________________________________________________________________
Rubi [A] time = 0.19, antiderivative size = 18, normalized size of antiderivative = 0.75, number of steps used = 3, number of rules used = 2, integrand size = 49, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.041, Rules used = {6688, 2197} \begin {gather*} -x-\frac {8 e^{-2 x}}{(5 x+2)^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2197
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-1+\frac {16 e^{-2 x} (7+5 x)}{(2+5 x)^3}\right ) \, dx\\ &=-x+16 \int \frac {e^{-2 x} (7+5 x)}{(2+5 x)^3} \, dx\\ &=-x-\frac {8 e^{-2 x}}{(2+5 x)^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.09, size = 28, normalized size = 1.17 \begin {gather*} -x-\frac {8 e^{\frac {4}{5}-\frac {2}{5} (2+5 x)}}{(2+5 x)^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.51, size = 39, normalized size = 1.62 \begin {gather*} -\frac {{\left ({\left (25 \, x^{3} + 20 \, x^{2} + 4 \, x\right )} e^{\left (2 \, x\right )} + 8\right )} e^{\left (-2 \, x\right )}}{25 \, x^{2} + 20 \, x + 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 34, normalized size = 1.42 \begin {gather*} -\frac {25 \, x^{3} + 20 \, x^{2} + 4 \, x + 8 \, e^{\left (-2 \, x\right )}}{25 \, x^{2} + 20 \, x + 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 18, normalized size = 0.75
method | result | size |
risch | \(-x -\frac {8 \,{\mathrm e}^{-2 x}}{\left (5 x +2\right )^{2}}\) | \(18\) |
default | \(-x +\frac {56 \,{\mathrm e}^{-2 x} \left (10 x -1\right )}{25 \left (25 x^{2}+20 x +4\right )}-\frac {16 \,{\mathrm e}^{-2 x} \left (35 x +9\right )}{25 \left (25 x^{2}+20 x +4\right )}\) | \(51\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -\frac {125 \, x^{4} + 150 \, x^{3} + 60 \, x^{2} + 40 \, x e^{\left (-2 \, x\right )} + 8 \, x}{125 \, x^{3} + 150 \, x^{2} + 60 \, x + 8} - \frac {112 \, e^{\frac {4}{5}} E_{3}\left (2 \, x + \frac {4}{5}\right )}{5 \, {\left (5 \, x + 2\right )}^{2}} - \int \frac {80 \, {\left (5 \, x - 1\right )} e^{\left (-2 \, x\right )}}{625 \, x^{4} + 1000 \, x^{3} + 600 \, x^{2} + 160 \, x + 16}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.12, size = 17, normalized size = 0.71 \begin {gather*} -x-\frac {8\,{\mathrm {e}}^{-2\,x}}{{\left (5\,x+2\right )}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 19, normalized size = 0.79 \begin {gather*} - x - \frac {8 e^{- 2 x}}{25 x^{2} + 20 x + 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________