Optimal. Leaf size=17 \[ \log (5) \left (9+\frac {e^x \log (x \log (x))}{x}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.81, antiderivative size = 14, normalized size of antiderivative = 0.82, number of steps used = 13, number of rules used = 7, integrand size = 39, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.180, Rules used = {6688, 12, 6742, 2177, 2178, 2197, 2555} \begin {gather*} \frac {e^x \log (5) \log (x \log (x))}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2177
Rule 2178
Rule 2197
Rule 2555
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^x \log (5) (1+\log (x)+(-1+x) \log (x) \log (x \log (x)))}{x^2 \log (x)} \, dx\\ &=\log (5) \int \frac {e^x (1+\log (x)+(-1+x) \log (x) \log (x \log (x)))}{x^2 \log (x)} \, dx\\ &=\log (5) \int \left (\frac {e^x (1+\log (x))}{x^2 \log (x)}+\frac {e^x (-1+x) \log (x \log (x))}{x^2}\right ) \, dx\\ &=\log (5) \int \frac {e^x (1+\log (x))}{x^2 \log (x)} \, dx+\log (5) \int \frac {e^x (-1+x) \log (x \log (x))}{x^2} \, dx\\ &=\frac {e^x \log (5) \log (x \log (x))}{x}+\log (5) \int \left (\frac {e^x}{x^2}+\frac {e^x}{x^2 \log (x)}\right ) \, dx-\log (5) \int \frac {e^x (1+\log (x))}{x^2 \log (x)} \, dx\\ &=\frac {e^x \log (5) \log (x \log (x))}{x}+\log (5) \int \frac {e^x}{x^2} \, dx-\log (5) \int \left (\frac {e^x}{x^2}+\frac {e^x}{x^2 \log (x)}\right ) \, dx+\log (5) \int \frac {e^x}{x^2 \log (x)} \, dx\\ &=-\frac {e^x \log (5)}{x}+\frac {e^x \log (5) \log (x \log (x))}{x}-\log (5) \int \frac {e^x}{x^2} \, dx+\log (5) \int \frac {e^x}{x} \, dx\\ &=\text {Ei}(x) \log (5)+\frac {e^x \log (5) \log (x \log (x))}{x}-\log (5) \int \frac {e^x}{x} \, dx\\ &=\frac {e^x \log (5) \log (x \log (x))}{x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.11, size = 14, normalized size = 0.82 \begin {gather*} \frac {e^x \log (5) \log (x \log (x))}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.68, size = 13, normalized size = 0.76 \begin {gather*} \frac {e^{x} \log \relax (5) \log \left (x \log \relax (x)\right )}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.20, size = 20, normalized size = 1.18 \begin {gather*} \frac {e^{x} \log \relax (5) \log \relax (x) + e^{x} \log \relax (5) \log \left (\log \relax (x)\right )}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.08, size = 99, normalized size = 5.82
method | result | size |
risch | \(\frac {\ln \relax (5) {\mathrm e}^{x} \ln \left (\ln \relax (x )\right )}{x}+\frac {{\mathrm e}^{x} \ln \relax (5) \left (-i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i \ln \relax (x )\right ) \mathrm {csgn}\left (i x \ln \relax (x )\right )+i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x \ln \relax (x )\right )^{2}+i \pi \,\mathrm {csgn}\left (i \ln \relax (x )\right ) \mathrm {csgn}\left (i x \ln \relax (x )\right )^{2}-i \pi \mathrm {csgn}\left (i x \ln \relax (x )\right )^{3}+2 \ln \relax (x )\right )}{2 x}\) | \(99\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \Gamma \left (-1, -x\right ) \log \relax (5) - \int \frac {e^{x}}{x^{2}}\,{d x} \log \relax (5) + \frac {e^{x} \log \relax (5) \log \relax (x) + e^{x} \log \relax (5) \log \left (\log \relax (x)\right )}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.44, size = 13, normalized size = 0.76 \begin {gather*} \frac {\ln \left (x\,\ln \relax (x)\right )\,{\mathrm {e}}^x\,\ln \relax (5)}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.34, size = 14, normalized size = 0.82 \begin {gather*} \frac {e^{x} \log {\relax (5 )} \log {\left (x \log {\relax (x )} \right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________