Optimal. Leaf size=30 \[ \log \left (\frac {1}{\left (3+e^{2 x} (7-x)-x\right ) \left (1+e^4+x^2\right )}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 1.22, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-1-e^4+6 x-3 x^2+e^{2 x} \left (13+e^4 (13-2 x)+12 x+11 x^2-2 x^3\right )}{-3+e^4 (-3+x)+x-3 x^2+x^3+e^{2 x} \left (-7+e^4 (-7+x)+x-7 x^2+x^3\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {1+e^4-6 x+3 x^2-e^{2 x} \left (13+e^4 (13-2 x)+12 x+11 x^2-2 x^3\right )}{\left (3+7 e^{2 x}-x-e^{2 x} x\right ) \left (1+e^4+x^2\right )} \, dx\\ &=\int \left (\frac {2 \left (23-10 x+x^2\right )}{(-7+x) \left (-3-7 e^{2 x}+x+e^{2 x} x\right )}+\frac {-13 \left (1+e^4\right )-2 \left (6-e^4\right ) x-11 x^2+2 x^3}{(7-x) \left (1+e^4+x^2\right )}\right ) \, dx\\ &=2 \int \frac {23-10 x+x^2}{(-7+x) \left (-3-7 e^{2 x}+x+e^{2 x} x\right )} \, dx+\int \frac {-13 \left (1+e^4\right )-2 \left (6-e^4\right ) x-11 x^2+2 x^3}{(7-x) \left (1+e^4+x^2\right )} \, dx\\ &=2 \int \left (-\frac {3}{-3-7 e^{2 x}+x+e^{2 x} x}+\frac {2}{(-7+x) \left (-3-7 e^{2 x}+x+e^{2 x} x\right )}+\frac {x}{-3-7 e^{2 x}+x+e^{2 x} x}\right ) \, dx+\int \left (-2+\frac {1}{7-x}-\frac {2 x}{1+e^4+x^2}\right ) \, dx\\ &=-2 x-\log (7-x)+2 \int \frac {x}{-3-7 e^{2 x}+x+e^{2 x} x} \, dx-2 \int \frac {x}{1+e^4+x^2} \, dx+4 \int \frac {1}{(-7+x) \left (-3-7 e^{2 x}+x+e^{2 x} x\right )} \, dx-6 \int \frac {1}{-3-7 e^{2 x}+x+e^{2 x} x} \, dx\\ &=-2 x-\log (7-x)-\log \left (1+e^4+x^2\right )+2 \int \frac {x}{-3+e^{2 x} (-7+x)+x} \, dx+4 \int \frac {1}{(-7+x) \left (-3-7 e^{2 x}+x+e^{2 x} x\right )} \, dx-6 \int \frac {1}{-3+e^{2 x} (-7+x)+x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.27, size = 35, normalized size = 1.17 \begin {gather*} -\log \left (3+7 e^{2 x}-x-e^{2 x} x\right )-\log \left (1+e^4+x^2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.52, size = 41, normalized size = 1.37 \begin {gather*} -\log \left (x^{3} - 7 \, x^{2} + {\left (x - 7\right )} e^{4} + x - 7\right ) - \log \left (\frac {{\left (x - 7\right )} e^{\left (2 \, x\right )} + x - 3}{x - 7}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.28, size = 29, normalized size = 0.97 \begin {gather*} -\log \left (x^{2} + e^{4} + 1\right ) - \log \left (x e^{\left (2 \, x\right )} + x - 7 \, e^{\left (2 \, x\right )} - 3\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.20, size = 30, normalized size = 1.00
method | result | size |
norman | \(-\ln \left (x^{2}+{\mathrm e}^{4}+1\right )-\ln \left (x \,{\mathrm e}^{2 x}-7 \,{\mathrm e}^{2 x}+x -3\right )\) | \(30\) |
risch | \(-\ln \left (x^{3}-7 x^{2}+\left ({\mathrm e}^{4}+1\right ) x -7 \,{\mathrm e}^{4}-7\right )-\ln \left ({\mathrm e}^{2 x}+\frac {x -3}{x -7}\right )\) | \(42\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 37, normalized size = 1.23 \begin {gather*} -\log \left (x^{2} + e^{4} + 1\right ) - \log \left (x - 7\right ) - \log \left (\frac {{\left (x - 7\right )} e^{\left (2 \, x\right )} + x - 3}{x - 7}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.40, size = 29, normalized size = 0.97 \begin {gather*} -\ln \left (x^2+{\mathrm {e}}^4+1\right )-\ln \left (x-7\,{\mathrm {e}}^{2\,x}+x\,{\mathrm {e}}^{2\,x}-3\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.64, size = 37, normalized size = 1.23 \begin {gather*} - \log {\left (e^{2 x} + \frac {x - 3}{x - 7} \right )} - \log {\left (x^{3} - 7 x^{2} + x \left (1 + e^{4}\right ) - 7 e^{4} - 7 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________