Optimal. Leaf size=27 \[ \left (x+\frac {4 x^4}{e}\right ) \left (2+i \pi +\log \left (-\left ((-3+e) e^3\right )\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.02, antiderivative size = 48, normalized size of antiderivative = 1.78, number of steps used = 3, number of rules used = 1, integrand size = 36, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.028, Rules used = {12} \begin {gather*} \frac {8 x^4}{e}+\frac {4 x^4 (3+i \pi +\log (3-e))}{e}+2 x+x (3+i \pi +\log (3-e)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \left (2 e+32 x^3+\left (e+16 x^3\right ) \left (i \pi +\log \left (-\left ((-3+e) e^3\right )\right )\right )\right ) \, dx}{e}\\ &=2 x+\frac {8 x^4}{e}+\frac {(3+i \pi +\log (3-e)) \int \left (e+16 x^3\right ) \, dx}{e}\\ &=2 x+\frac {8 x^4}{e}+x (3+i \pi +\log (3-e))+\frac {4 x^4 (3+i \pi +\log (3-e))}{e}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.00, size = 26, normalized size = 0.96 \begin {gather*} \frac {\left (e x+4 x^4\right ) (5+i \pi +\log (3-e))}{e} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.65, size = 33, normalized size = 1.22 \begin {gather*} {\left (8 \, x^{4} + 2 \, x e + {\left (4 \, x^{4} + x e\right )} \log \left (e^{4} - 3 \, e^{3}\right )\right )} e^{\left (-1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.13, size = 33, normalized size = 1.22 \begin {gather*} {\left (8 \, x^{4} + 2 \, x e + {\left (4 \, x^{4} + x e\right )} \log \left ({\left (e - 3\right )} e^{3}\right )\right )} e^{\left (-1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 25, normalized size = 0.93
method | result | size |
gosper | \(\left (2+\ln \left (\left ({\mathrm e}-3\right ) {\mathrm e}^{3}\right )\right ) x \left (4 x^{3}+{\mathrm e}\right ) {\mathrm e}^{-1}\) | \(25\) |
norman | \(\left (\ln \left ({\mathrm e}-3\right )+5\right ) x +4 \left (\ln \left ({\mathrm e}-3\right )+5\right ) {\mathrm e}^{-1} x^{4}\) | \(27\) |
default | \({\mathrm e}^{-1} \left (\ln \left (\left ({\mathrm e}-3\right ) {\mathrm e}^{3}\right ) \left (4 x^{4}+x \,{\mathrm e}\right )+2 x \,{\mathrm e}+8 x^{4}\right )\) | \(36\) |
risch | \(4 i {\mathrm e}^{-1} \pi \,x^{4}+4 \,{\mathrm e}^{-1} \ln \left (3-{\mathrm e}\right ) x^{4}+i \pi x +20 x^{4} {\mathrm e}^{-1}+\ln \left (3-{\mathrm e}\right ) x +5 x\) | \(49\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.35, size = 33, normalized size = 1.22 \begin {gather*} {\left (8 \, x^{4} + 2 \, x e + {\left (4 \, x^{4} + x e\right )} \log \left ({\left (e - 3\right )} e^{3}\right )\right )} e^{\left (-1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.43, size = 22, normalized size = 0.81 \begin {gather*} x\,{\mathrm {e}}^{-1}\,\left (\ln \left ({\mathrm {e}}^3\,\left (\mathrm {e}-3\right )\right )+2\right )\,\left (4\,x^3+\mathrm {e}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.07, size = 34, normalized size = 1.26 \begin {gather*} \frac {x^{4} \left (4 \log {\left (3 - e \right )} + 20 + 4 i \pi \right )}{e} + x \left (\log {\left (3 - e \right )} + 5 + i \pi \right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________