Optimal. Leaf size=23 \[ 4 \left (x+x^2+\frac {1}{x+\log \left (-2+\frac {1}{-x+\log (\log (5))}\right )}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 1.62, antiderivative size = 37, normalized size of antiderivative = 1.61, number of steps used = 5, number of rules used = 4, integrand size = 339, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.012, Rules used = {6688, 12, 6728, 6686} \begin {gather*} 4 x^2+4 x+\frac {4}{x+\log \left (-\frac {2 x+1-2 \log (\log (5))}{x-\log (\log (5))}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6686
Rule 6688
Rule 6728
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {4 \left (1+4 x^5+x^4 (4-8 \log (\log (5)))+(1-2 \log (\log (5))) \log (\log (5))+x (-1+4 \log (\log (5)))+x^2 \left (-2-\log (\log (5))+2 \log ^2(\log (5))\right )+x^3 \left (1-6 \log (\log (5))+4 \log ^2(\log (5))\right )+2 x (1+2 x) \left (x+2 x^2-4 x \log (\log (5))+\log (\log (5)) (-1+2 \log (\log (5)))\right ) \log \left (\frac {1+2 x-2 \log (\log (5))}{-x+\log (\log (5))}\right )+(1+2 x) \left (x+2 x^2-4 x \log (\log (5))+\log (\log (5)) (-1+2 \log (\log (5)))\right ) \log ^2\left (\frac {1+2 x-2 \log (\log (5))}{-x+\log (\log (5))}\right )\right )}{\left (2 x^2+x (1-4 \log (\log (5)))-(1-2 \log (\log (5))) \log (\log (5))\right ) \left (x+\log \left (\frac {1+2 x-2 \log (\log (5))}{-x+\log (\log (5))}\right )\right )^2} \, dx\\ &=4 \int \frac {1+4 x^5+x^4 (4-8 \log (\log (5)))+(1-2 \log (\log (5))) \log (\log (5))+x (-1+4 \log (\log (5)))+x^2 \left (-2-\log (\log (5))+2 \log ^2(\log (5))\right )+x^3 \left (1-6 \log (\log (5))+4 \log ^2(\log (5))\right )+2 x (1+2 x) \left (x+2 x^2-4 x \log (\log (5))+\log (\log (5)) (-1+2 \log (\log (5)))\right ) \log \left (\frac {1+2 x-2 \log (\log (5))}{-x+\log (\log (5))}\right )+(1+2 x) \left (x+2 x^2-4 x \log (\log (5))+\log (\log (5)) (-1+2 \log (\log (5)))\right ) \log ^2\left (\frac {1+2 x-2 \log (\log (5))}{-x+\log (\log (5))}\right )}{\left (2 x^2+x (1-4 \log (\log (5)))-(1-2 \log (\log (5))) \log (\log (5))\right ) \left (x+\log \left (\frac {1+2 x-2 \log (\log (5))}{-x+\log (\log (5))}\right )\right )^2} \, dx\\ &=4 \int \left (1+2 x+\frac {1-2 x^2-x (1-4 \log (\log (5)))+\log (\log (5))-2 \log ^2(\log (5))}{(1+2 x-2 \log (\log (5))) (x-\log (\log (5))) \left (x+\log \left (\frac {1+2 x-2 \log (\log (5))}{-x+\log (\log (5))}\right )\right )^2}\right ) \, dx\\ &=4 x+4 x^2+4 \int \frac {1-2 x^2-x (1-4 \log (\log (5)))+\log (\log (5))-2 \log ^2(\log (5))}{(1+2 x-2 \log (\log (5))) (x-\log (\log (5))) \left (x+\log \left (\frac {1+2 x-2 \log (\log (5))}{-x+\log (\log (5))}\right )\right )^2} \, dx\\ &=4 x+4 x^2+\frac {4}{x+\log \left (-\frac {1+2 x-2 \log (\log (5))}{x-\log (\log (5))}\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.14, size = 32, normalized size = 1.39 \begin {gather*} 4 \left (x+x^2+\frac {1}{x+\log \left (\frac {1+2 x-2 \log (\log (5))}{-x+\log (\log (5))}\right )}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.59, size = 64, normalized size = 2.78 \begin {gather*} \frac {4 \, {\left (x^{3} + x^{2} + {\left (x^{2} + x\right )} \log \left (-\frac {2 \, x - 2 \, \log \left (\log \relax (5)\right ) + 1}{x - \log \left (\log \relax (5)\right )}\right ) + 1\right )}}{x + \log \left (-\frac {2 \, x - 2 \, \log \left (\log \relax (5)\right ) + 1}{x - \log \left (\log \relax (5)\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 1.09, size = 223, normalized size = 9.70 \begin {gather*} \frac {4 \, {\left (\frac {2 \, {\left (2 \, x - 2 \, \log \left (\log \relax (5)\right ) + 1\right )} \log \left (\log \relax (5)\right )}{x - \log \left (\log \relax (5)\right )} + \frac {2 \, x - 2 \, \log \left (\log \relax (5)\right ) + 1}{x - \log \left (\log \relax (5)\right )} - 4 \, \log \left (\log \relax (5)\right ) - 1\right )}}{\frac {{\left (2 \, x - 2 \, \log \left (\log \relax (5)\right ) + 1\right )}^{2}}{{\left (x - \log \left (\log \relax (5)\right )\right )}^{2}} - \frac {4 \, {\left (2 \, x - 2 \, \log \left (\log \relax (5)\right ) + 1\right )}}{x - \log \left (\log \relax (5)\right )} + 4} + \frac {4 \, {\left (\frac {2 \, x - 2 \, \log \left (\log \relax (5)\right ) + 1}{x - \log \left (\log \relax (5)\right )} - 2\right )}}{\frac {{\left (2 \, x - 2 \, \log \left (\log \relax (5)\right ) + 1\right )} \log \left (-\frac {2 \, x - 2 \, \log \left (\log \relax (5)\right ) + 1}{x - \log \left (\log \relax (5)\right )}\right )}{x - \log \left (\log \relax (5)\right )} + \frac {{\left (2 \, x - 2 \, \log \left (\log \relax (5)\right ) + 1\right )} \log \left (\log \relax (5)\right )}{x - \log \left (\log \relax (5)\right )} - 2 \, \log \left (-\frac {2 \, x - 2 \, \log \left (\log \relax (5)\right ) + 1}{x - \log \left (\log \relax (5)\right )}\right ) - 2 \, \log \left (\log \relax (5)\right ) + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.43, size = 37, normalized size = 1.61
method | result | size |
risch | \(4 x^{2}+4 x +\frac {4}{x +\ln \left (\frac {-2 \ln \left (\ln \relax (5)\right )+2 x +1}{\ln \left (\ln \relax (5)\right )-x}\right )}\) | \(37\) |
norman | \(\frac {4+4 x \ln \left (\frac {-2 \ln \left (\ln \relax (5)\right )+2 x +1}{\ln \left (\ln \relax (5)\right )-x}\right )+4 x^{2}+4 x^{3}+4 \ln \left (\frac {-2 \ln \left (\ln \relax (5)\right )+2 x +1}{\ln \left (\ln \relax (5)\right )-x}\right ) x^{2}}{x +\ln \left (\frac {-2 \ln \left (\ln \relax (5)\right )+2 x +1}{\ln \left (\ln \relax (5)\right )-x}\right )}\) | \(89\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.54, size = 67, normalized size = 2.91 \begin {gather*} \frac {4 \, {\left (x^{3} + x^{2} - {\left (x^{2} + x\right )} \log \left (x - \log \left (\log \relax (5)\right )\right ) + {\left (x^{2} + x\right )} \log \left (-2 \, x + 2 \, \log \left (\log \relax (5)\right ) - 1\right ) + 1\right )}}{x - \log \left (x - \log \left (\log \relax (5)\right )\right ) + \log \left (-2 \, x + 2 \, \log \left (\log \relax (5)\right ) - 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 62.18, size = 37, normalized size = 1.61 \begin {gather*} 4\,x+4\,x^2+\frac {4}{x+\ln \left (-\frac {2\,x-2\,\ln \left (\ln \relax (5)\right )+1}{x-\ln \left (\ln \relax (5)\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.42, size = 31, normalized size = 1.35 \begin {gather*} 4 x^{2} + 4 x + \frac {4}{x + \log {\left (\frac {2 x - 2 \log {\left (\log {\relax (5 )} \right )} + 1}{- x + \log {\left (\log {\relax (5 )} \right )}} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________