Optimal. Leaf size=28 \[ \frac {4 \left (\frac {5}{x}+\log \left (4+e^{e^{-3+e^{e^x}}}\right )\right )}{e^3 x^2} \]
________________________________________________________________________________________
Rubi [F] time = 1.84, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-\frac {240}{e^3}+e^{e^{-3+e^{e^x}}} \left (-\frac {60}{e^3}+4 e^{-6+e^{e^x}+e^x+x} x^2\right )+\left (-\frac {32 x}{e^3}-8 e^{-3+e^{-3+e^{e^x}}} x\right ) \log \left (4+e^{e^{-3+e^{e^x}}}\right )}{4 x^4+e^{e^{-3+e^{e^x}}} x^4} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {4 e^{-6+e^{e^x}+e^{-3+e^{e^x}}+e^x+x}}{\left (4+e^{e^{-3+e^{e^x}}}\right ) x^2}-\frac {4 \left (15+2 x \log \left (4+e^{e^{-3+e^{e^x}}}\right )\right )}{e^3 x^4}\right ) \, dx\\ &=4 \int \frac {e^{-6+e^{e^x}+e^{-3+e^{e^x}}+e^x+x}}{\left (4+e^{e^{-3+e^{e^x}}}\right ) x^2} \, dx-\frac {4 \int \frac {15+2 x \log \left (4+e^{e^{-3+e^{e^x}}}\right )}{x^4} \, dx}{e^3}\\ &=4 \int \frac {e^{-6+e^{e^x}+e^{-3+e^{e^x}}+e^x+x}}{\left (4+e^{e^{-3+e^{e^x}}}\right ) x^2} \, dx-\frac {4 \int \left (\frac {15}{x^4}+\frac {2 \log \left (4+e^{e^{-3+e^{e^x}}}\right )}{x^3}\right ) \, dx}{e^3}\\ &=\frac {20}{e^3 x^3}+4 \int \frac {e^{-6+e^{e^x}+e^{-3+e^{e^x}}+e^x+x}}{\left (4+e^{e^{-3+e^{e^x}}}\right ) x^2} \, dx-\frac {8 \int \frac {\log \left (4+e^{e^{-3+e^{e^x}}}\right )}{x^3} \, dx}{e^3}\\ &=\frac {20}{e^3 x^3}+\frac {4 \log \left (4+e^{e^{-3+e^{e^x}}}\right )}{e^3 x^2}+4 \int \frac {e^{-6+e^{e^x}+e^{-3+e^{e^x}}+e^x+x}}{\left (4+e^{e^{-3+e^{e^x}}}\right ) x^2} \, dx-\frac {4 \int \frac {e^{-3+e^{e^x}+e^{-3+e^{e^x}}+e^x+x}}{\left (4+e^{e^{-3+e^{e^x}}}\right ) x^2} \, dx}{e^3}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.12, size = 36, normalized size = 1.29 \begin {gather*} -\frac {4 \left (-\frac {5 e^3}{x^3}-\frac {e^3 \log \left (4+e^{e^{-3+e^{e^x}}}\right )}{x^2}\right )}{e^6} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.54, size = 89, normalized size = 3.18 \begin {gather*} \frac {x e^{\left (2 \, \log \relax (2) - 3\right )} \log \left ({\left (e^{\left ({\left ({\left (2 \, \log \relax (2) - 3\right )} e^{\left (x + e^{x} + 2 \, \log \relax (2) - 3\right )} + e^{\left (x + e^{x} + e^{\left (e^{x}\right )} + 2 \, \log \relax (2) - 6\right )}\right )} e^{\left (-x - e^{x} - 2 \, \log \relax (2) + 3\right )}\right )} + 4 \, e^{\left (2 \, \log \relax (2) - 3\right )}\right )} e^{\left (-2 \, \log \relax (2) + 3\right )}\right ) + 5 \, e^{\left (2 \, \log \relax (2) - 3\right )}}{x^{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.17, size = 52, normalized size = 1.86 \begin {gather*} \frac {4 \, {\left (x \log \left ({\left (e^{\left (x + e^{x} + e^{\left (e^{\left (e^{x}\right )} - 3\right )} + e^{\left (e^{x}\right )}\right )} + 4 \, e^{\left (x + e^{x} + e^{\left (e^{x}\right )}\right )}\right )} e^{\left (-x - e^{x} - e^{\left (e^{x}\right )}\right )}\right ) + 5\right )} e^{\left (-3\right )}}{x^{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.12, size = 26, normalized size = 0.93
method | result | size |
risch | \(\frac {4 \,{\mathrm e}^{-3} \ln \left ({\mathrm e}^{{\mathrm e}^{-3+{\mathrm e}^{{\mathrm e}^{x}}}}+4\right )}{x^{2}}+\frac {20 \,{\mathrm e}^{-3}}{x^{3}}\) | \(26\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.53, size = 21, normalized size = 0.75 \begin {gather*} \frac {4 \, {\left (x \log \left (e^{\left (e^{\left (e^{\left (e^{x}\right )} - 3\right )}\right )} + 4\right ) + 5\right )} e^{\left (-3\right )}}{x^{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.26, size = 22, normalized size = 0.79 \begin {gather*} \frac {4\,{\mathrm {e}}^{-3}\,\left (x\,\ln \left ({\mathrm {e}}^{{\mathrm {e}}^{-3}\,{\mathrm {e}}^{{\mathrm {e}}^{{\mathrm {e}}^x}}}+4\right )+5\right )}{x^3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 5.11, size = 29, normalized size = 1.04 \begin {gather*} \frac {4 \log {\left (e^{e^{e^{e^{x}} - 3}} + 4 \right )}}{x^{2} e^{3}} + \frac {20}{x^{3} e^{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________