Optimal. Leaf size=31 \[ \frac {x \left (4+x^2\right )}{5 \left (e^{\frac {8}{256+e^{2 e^x}}}-x\right )} \]
________________________________________________________________________________________
Rubi [F] time = 28.76, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-131072 x^3-1024 e^{2 e^x} x^3-2 e^{4 e^x} x^3+e^{\frac {8}{256+e^{2 e^x}}} \left (262144+196608 x^2+e^{4 e^x} \left (4+3 x^2\right )+e^{2 e^x} \left (2048+1536 x^2+e^x \left (64 x+16 x^3\right )\right )\right )}{e^{\frac {16}{256+e^{2 e^x}}} \left (327680+2560 e^{2 e^x}+5 e^{4 e^x}\right )+327680 x^2+2560 e^{2 e^x} x^2+5 e^{4 e^x} x^2+e^{\frac {8}{256+e^{2 e^x}}} \left (-655360 x-5120 e^{2 e^x} x-10 e^{4 e^x} x\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-131072 x^3-1024 e^{2 e^x} x^3-2 e^{4 e^x} x^3+e^{\frac {8}{256+e^{2 e^x}}} \left (262144+196608 x^2+e^{4 e^x} \left (4+3 x^2\right )+e^{2 e^x} \left (2048+1536 x^2+e^x \left (64 x+16 x^3\right )\right )\right )}{5 \left (256+e^{2 e^x}\right )^2 \left (e^{\frac {8}{256+e^{2 e^x}}}-x\right )^2} \, dx\\ &=\frac {1}{5} \int \frac {-131072 x^3-1024 e^{2 e^x} x^3-2 e^{4 e^x} x^3+e^{\frac {8}{256+e^{2 e^x}}} \left (262144+196608 x^2+e^{4 e^x} \left (4+3 x^2\right )+e^{2 e^x} \left (2048+1536 x^2+e^x \left (64 x+16 x^3\right )\right )\right )}{\left (256+e^{2 e^x}\right )^2 \left (e^{\frac {8}{256+e^{2 e^x}}}-x\right )^2} \, dx\\ &=\frac {1}{5} \int \left (\frac {262144 e^{\frac {8}{256+e^{2 e^x}}}}{\left (256+e^{2 e^x}\right )^2 \left (e^{\frac {8}{256+e^{2 e^x}}}-x\right )^2}+\frac {2048 e^{2 e^x+\frac {8}{256+e^{2 e^x}}}}{\left (256+e^{2 e^x}\right )^2 \left (e^{\frac {8}{256+e^{2 e^x}}}-x\right )^2}+\frac {196608 e^{\frac {8}{256+e^{2 e^x}}} x^2}{\left (256+e^{2 e^x}\right )^2 \left (e^{\frac {8}{256+e^{2 e^x}}}-x\right )^2}+\frac {1536 e^{2 e^x+\frac {8}{256+e^{2 e^x}}} x^2}{\left (256+e^{2 e^x}\right )^2 \left (e^{\frac {8}{256+e^{2 e^x}}}-x\right )^2}-\frac {131072 x^3}{\left (256+e^{2 e^x}\right )^2 \left (e^{\frac {8}{256+e^{2 e^x}}}-x\right )^2}-\frac {1024 e^{2 e^x} x^3}{\left (256+e^{2 e^x}\right )^2 \left (e^{\frac {8}{256+e^{2 e^x}}}-x\right )^2}-\frac {2 e^{4 e^x} x^3}{\left (256+e^{2 e^x}\right )^2 \left (e^{\frac {8}{256+e^{2 e^x}}}-x\right )^2}+\frac {16 e^{2 e^x+\frac {8}{256+e^{2 e^x}}+x} x \left (4+x^2\right )}{\left (256+e^{2 e^x}\right )^2 \left (e^{\frac {8}{256+e^{2 e^x}}}-x\right )^2}+\frac {e^{4 e^x+\frac {8}{256+e^{2 e^x}}} \left (4+3 x^2\right )}{\left (256+e^{2 e^x}\right )^2 \left (e^{\frac {8}{256+e^{2 e^x}}}-x\right )^2}\right ) \, dx\\ &=\frac {1}{5} \int \frac {e^{4 e^x+\frac {8}{256+e^{2 e^x}}} \left (4+3 x^2\right )}{\left (256+e^{2 e^x}\right )^2 \left (e^{\frac {8}{256+e^{2 e^x}}}-x\right )^2} \, dx-\frac {2}{5} \int \frac {e^{4 e^x} x^3}{\left (256+e^{2 e^x}\right )^2 \left (e^{\frac {8}{256+e^{2 e^x}}}-x\right )^2} \, dx+\frac {16}{5} \int \frac {e^{2 e^x+\frac {8}{256+e^{2 e^x}}+x} x \left (4+x^2\right )}{\left (256+e^{2 e^x}\right )^2 \left (e^{\frac {8}{256+e^{2 e^x}}}-x\right )^2} \, dx-\frac {1024}{5} \int \frac {e^{2 e^x} x^3}{\left (256+e^{2 e^x}\right )^2 \left (e^{\frac {8}{256+e^{2 e^x}}}-x\right )^2} \, dx+\frac {1536}{5} \int \frac {e^{2 e^x+\frac {8}{256+e^{2 e^x}}} x^2}{\left (256+e^{2 e^x}\right )^2 \left (e^{\frac {8}{256+e^{2 e^x}}}-x\right )^2} \, dx+\frac {2048}{5} \int \frac {e^{2 e^x+\frac {8}{256+e^{2 e^x}}}}{\left (256+e^{2 e^x}\right )^2 \left (e^{\frac {8}{256+e^{2 e^x}}}-x\right )^2} \, dx-\frac {131072}{5} \int \frac {x^3}{\left (256+e^{2 e^x}\right )^2 \left (e^{\frac {8}{256+e^{2 e^x}}}-x\right )^2} \, dx+\frac {196608}{5} \int \frac {e^{\frac {8}{256+e^{2 e^x}}} x^2}{\left (256+e^{2 e^x}\right )^2 \left (e^{\frac {8}{256+e^{2 e^x}}}-x\right )^2} \, dx+\frac {262144}{5} \int \frac {e^{\frac {8}{256+e^{2 e^x}}}}{\left (256+e^{2 e^x}\right )^2 \left (e^{\frac {8}{256+e^{2 e^x}}}-x\right )^2} \, dx\\ &=\frac {1}{5} \int \left (\frac {4 e^{4 e^x+\frac {8}{256+e^{2 e^x}}}}{\left (256+e^{2 e^x}\right )^2 \left (e^{\frac {8}{256+e^{2 e^x}}}-x\right )^2}+\frac {3 e^{4 e^x+\frac {8}{256+e^{2 e^x}}} x^2}{\left (256+e^{2 e^x}\right )^2 \left (e^{\frac {8}{256+e^{2 e^x}}}-x\right )^2}\right ) \, dx-\frac {2}{5} \int \frac {e^{4 e^x} x^3}{\left (256+e^{2 e^x}\right )^2 \left (e^{\frac {8}{256+e^{2 e^x}}}-x\right )^2} \, dx+\frac {16}{5} \int \left (\frac {4 e^{2 e^x+\frac {8}{256+e^{2 e^x}}+x} x}{\left (256+e^{2 e^x}\right )^2 \left (e^{\frac {8}{256+e^{2 e^x}}}-x\right )^2}+\frac {e^{2 e^x+\frac {8}{256+e^{2 e^x}}+x} x^3}{\left (256+e^{2 e^x}\right )^2 \left (e^{\frac {8}{256+e^{2 e^x}}}-x\right )^2}\right ) \, dx-\frac {1024}{5} \int \frac {e^{2 e^x} x^3}{\left (256+e^{2 e^x}\right )^2 \left (e^{\frac {8}{256+e^{2 e^x}}}-x\right )^2} \, dx+\frac {1536}{5} \int \frac {e^{2 e^x+\frac {8}{256+e^{2 e^x}}} x^2}{\left (256+e^{2 e^x}\right )^2 \left (e^{\frac {8}{256+e^{2 e^x}}}-x\right )^2} \, dx+\frac {2048}{5} \int \frac {e^{2 e^x+\frac {8}{256+e^{2 e^x}}}}{\left (256+e^{2 e^x}\right )^2 \left (e^{\frac {8}{256+e^{2 e^x}}}-x\right )^2} \, dx-\frac {131072}{5} \int \frac {x^3}{\left (256+e^{2 e^x}\right )^2 \left (e^{\frac {8}{256+e^{2 e^x}}}-x\right )^2} \, dx+\frac {196608}{5} \int \frac {e^{\frac {8}{256+e^{2 e^x}}} x^2}{\left (256+e^{2 e^x}\right )^2 \left (e^{\frac {8}{256+e^{2 e^x}}}-x\right )^2} \, dx+\frac {262144}{5} \int \frac {e^{\frac {8}{256+e^{2 e^x}}}}{\left (256+e^{2 e^x}\right )^2 \left (e^{\frac {8}{256+e^{2 e^x}}}-x\right )^2} \, dx\\ &=-\left (\frac {2}{5} \int \frac {e^{4 e^x} x^3}{\left (256+e^{2 e^x}\right )^2 \left (e^{\frac {8}{256+e^{2 e^x}}}-x\right )^2} \, dx\right )+\frac {3}{5} \int \frac {e^{4 e^x+\frac {8}{256+e^{2 e^x}}} x^2}{\left (256+e^{2 e^x}\right )^2 \left (e^{\frac {8}{256+e^{2 e^x}}}-x\right )^2} \, dx+\frac {4}{5} \int \frac {e^{4 e^x+\frac {8}{256+e^{2 e^x}}}}{\left (256+e^{2 e^x}\right )^2 \left (e^{\frac {8}{256+e^{2 e^x}}}-x\right )^2} \, dx+\frac {16}{5} \int \frac {e^{2 e^x+\frac {8}{256+e^{2 e^x}}+x} x^3}{\left (256+e^{2 e^x}\right )^2 \left (e^{\frac {8}{256+e^{2 e^x}}}-x\right )^2} \, dx+\frac {64}{5} \int \frac {e^{2 e^x+\frac {8}{256+e^{2 e^x}}+x} x}{\left (256+e^{2 e^x}\right )^2 \left (e^{\frac {8}{256+e^{2 e^x}}}-x\right )^2} \, dx-\frac {1024}{5} \int \frac {e^{2 e^x} x^3}{\left (256+e^{2 e^x}\right )^2 \left (e^{\frac {8}{256+e^{2 e^x}}}-x\right )^2} \, dx+\frac {1536}{5} \int \frac {e^{2 e^x+\frac {8}{256+e^{2 e^x}}} x^2}{\left (256+e^{2 e^x}\right )^2 \left (e^{\frac {8}{256+e^{2 e^x}}}-x\right )^2} \, dx+\frac {2048}{5} \int \frac {e^{2 e^x+\frac {8}{256+e^{2 e^x}}}}{\left (256+e^{2 e^x}\right )^2 \left (e^{\frac {8}{256+e^{2 e^x}}}-x\right )^2} \, dx-\frac {131072}{5} \int \frac {x^3}{\left (256+e^{2 e^x}\right )^2 \left (e^{\frac {8}{256+e^{2 e^x}}}-x\right )^2} \, dx+\frac {196608}{5} \int \frac {e^{\frac {8}{256+e^{2 e^x}}} x^2}{\left (256+e^{2 e^x}\right )^2 \left (e^{\frac {8}{256+e^{2 e^x}}}-x\right )^2} \, dx+\frac {262144}{5} \int \frac {e^{\frac {8}{256+e^{2 e^x}}}}{\left (256+e^{2 e^x}\right )^2 \left (e^{\frac {8}{256+e^{2 e^x}}}-x\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.42, size = 31, normalized size = 1.00 \begin {gather*} \frac {x \left (4+x^2\right )}{5 \left (e^{\frac {8}{256+e^{2 e^x}}}-x\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.94, size = 27, normalized size = 0.87 \begin {gather*} -\frac {x^{3} + 4 \, x}{5 \, {\left (x - e^{\left (\frac {8}{e^{\left (2 \, e^{x}\right )} + 256}\right )}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 8.01, size = 566, normalized size = 18.26 \begin {gather*} -\frac {16 \, x^{4} e^{\left (x + 7 \, e^{x}\right )} + 8192 \, x^{4} e^{\left (x + 5 \, e^{x}\right )} + 1048576 \, x^{4} e^{\left (x + 3 \, e^{x}\right )} + x^{3} e^{\left (9 \, e^{x}\right )} + 1024 \, x^{3} e^{\left (7 \, e^{x}\right )} + 393216 \, x^{3} e^{\left (5 \, e^{x}\right )} + 67108864 \, x^{3} e^{\left (3 \, e^{x}\right )} + 4294967296 \, x^{3} e^{\left (e^{x}\right )} + 64 \, x^{2} e^{\left (x + 7 \, e^{x}\right )} + 32768 \, x^{2} e^{\left (x + 5 \, e^{x}\right )} + 4194304 \, x^{2} e^{\left (x + 3 \, e^{x}\right )} + 4 \, x e^{\left (9 \, e^{x}\right )} + 4096 \, x e^{\left (7 \, e^{x}\right )} + 1572864 \, x e^{\left (5 \, e^{x}\right )} + 268435456 \, x e^{\left (3 \, e^{x}\right )} + 17179869184 \, x e^{\left (e^{x}\right )}}{5 \, {\left (16 \, x^{2} e^{\left (x + 7 \, e^{x}\right )} + 8192 \, x^{2} e^{\left (x + 5 \, e^{x}\right )} + 1048576 \, x^{2} e^{\left (x + 3 \, e^{x}\right )} - 16 \, x e^{\left (x + \frac {32 \, e^{\left (x + 2 \, e^{x}\right )} + 8192 \, e^{x} - e^{\left (2 \, e^{x}\right )}}{32 \, {\left (e^{\left (2 \, e^{x}\right )} + 256\right )}} + 6 \, e^{x} + \frac {1}{32}\right )} - 8192 \, x e^{\left (x + \frac {32 \, e^{\left (x + 2 \, e^{x}\right )} + 8192 \, e^{x} - e^{\left (2 \, e^{x}\right )}}{32 \, {\left (e^{\left (2 \, e^{x}\right )} + 256\right )}} + 4 \, e^{x} + \frac {1}{32}\right )} - 1048576 \, x e^{\left (x + \frac {32 \, e^{\left (x + 2 \, e^{x}\right )} + 8192 \, e^{x} - e^{\left (2 \, e^{x}\right )}}{32 \, {\left (e^{\left (2 \, e^{x}\right )} + 256\right )}} + 2 \, e^{x} + \frac {1}{32}\right )} + x e^{\left (9 \, e^{x}\right )} + 1024 \, x e^{\left (7 \, e^{x}\right )} + 393216 \, x e^{\left (5 \, e^{x}\right )} + 67108864 \, x e^{\left (3 \, e^{x}\right )} + 4294967296 \, x e^{\left (e^{x}\right )} - e^{\left (\frac {32 \, e^{\left (x + 2 \, e^{x}\right )} + 8192 \, e^{x} - e^{\left (2 \, e^{x}\right )}}{32 \, {\left (e^{\left (2 \, e^{x}\right )} + 256\right )}} + 8 \, e^{x} + \frac {1}{32}\right )} - 1024 \, e^{\left (\frac {32 \, e^{\left (x + 2 \, e^{x}\right )} + 8192 \, e^{x} - e^{\left (2 \, e^{x}\right )}}{32 \, {\left (e^{\left (2 \, e^{x}\right )} + 256\right )}} + 6 \, e^{x} + \frac {1}{32}\right )} - 393216 \, e^{\left (\frac {32 \, e^{\left (x + 2 \, e^{x}\right )} + 8192 \, e^{x} - e^{\left (2 \, e^{x}\right )}}{32 \, {\left (e^{\left (2 \, e^{x}\right )} + 256\right )}} + 4 \, e^{x} + \frac {1}{32}\right )} - 67108864 \, e^{\left (\frac {32 \, e^{\left (x + 2 \, e^{x}\right )} + 8192 \, e^{x} - e^{\left (2 \, e^{x}\right )}}{32 \, {\left (e^{\left (2 \, e^{x}\right )} + 256\right )}} + 2 \, e^{x} + \frac {1}{32}\right )} - 4294967296 \, e^{\left (\frac {32 \, e^{\left (x + 2 \, e^{x}\right )} + 8192 \, e^{x} - e^{\left (2 \, e^{x}\right )}}{32 \, {\left (e^{\left (2 \, e^{x}\right )} + 256\right )}} + \frac {1}{32}\right )}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.11, size = 27, normalized size = 0.87
method | result | size |
risch | \(-\frac {x \left (x^{2}+4\right )}{5 \left (-{\mathrm e}^{\frac {8}{{\mathrm e}^{2 \,{\mathrm e}^{x}}+256}}+x \right )}\) | \(27\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.74, size = 27, normalized size = 0.87 \begin {gather*} -\frac {x^{3} + 4 \, x}{5 \, {\left (x - e^{\left (\frac {8}{e^{\left (2 \, e^{x}\right )} + 256}\right )}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.69, size = 168, normalized size = 5.42 \begin {gather*} -\frac {x\,{\left (512\,{\mathrm {e}}^{2\,{\mathrm {e}}^x}+{\mathrm {e}}^{4\,{\mathrm {e}}^x}+65536\right )}^2\,\left (2048\,{\mathrm {e}}^{2\,{\mathrm {e}}^x}+4\,{\mathrm {e}}^{4\,{\mathrm {e}}^x}+64\,x\,{\mathrm {e}}^{x+2\,{\mathrm {e}}^x}+16\,x^3\,{\mathrm {e}}^{x+2\,{\mathrm {e}}^x}+65536\,x^2+512\,x^2\,{\mathrm {e}}^{2\,{\mathrm {e}}^x}+x^2\,{\mathrm {e}}^{4\,{\mathrm {e}}^x}+262144\right )}{5\,{\left ({\mathrm {e}}^{2\,{\mathrm {e}}^x}+256\right )}^2\,\left (x-{\mathrm {e}}^{\frac {8}{{\mathrm {e}}^{2\,{\mathrm {e}}^x}+256}}\right )\,\left (67108864\,{\mathrm {e}}^{2\,{\mathrm {e}}^x}+393216\,{\mathrm {e}}^{4\,{\mathrm {e}}^x}+1024\,{\mathrm {e}}^{6\,{\mathrm {e}}^x}+{\mathrm {e}}^{8\,{\mathrm {e}}^x}+1048576\,x\,{\mathrm {e}}^{x+2\,{\mathrm {e}}^x}+8192\,x\,{\mathrm {e}}^{x+4\,{\mathrm {e}}^x}+16\,x\,{\mathrm {e}}^{x+6\,{\mathrm {e}}^x}+4294967296\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.40, size = 22, normalized size = 0.71 \begin {gather*} \frac {x^{3} + 4 x}{- 5 x + 5 e^{\frac {8}{e^{2 e^{x}} + 256}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________