3.44.36 \(\int \frac {e^{1+e^5} x+e^{-4+2 e^5} (e^3 (-1+x)-2 e^6 x+e^{3+x} (2 x-x^2))-e^{-1+2 e^5} x \log (x)}{x+e^{-2+e^5} (2 e^x x+e^3 (-6 x+2 x^2))+e^{-4+2 e^5} (e^{2 x} x+e^{3+x} (-6 x+2 x^2)+e^6 (9 x-6 x^2+x^3))+(-2 e^{-2+e^5} x+e^{-4+2 e^5} (-2 e^x x+e^3 (6 x-2 x^2))) \log (x)+e^{-4+2 e^5} x \log ^2(x)} \, dx\)

Optimal. Leaf size=35 \[ \frac {1-x}{3-x-\frac {e^{2-e^5}+e^x-\log (x)}{e^3}} \]

________________________________________________________________________________________

Rubi [F]  time = 6.61, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{1+e^5} x+e^{-4+2 e^5} \left (e^3 (-1+x)-2 e^6 x+e^{3+x} \left (2 x-x^2\right )\right )-e^{-1+2 e^5} x \log (x)}{x+e^{-2+e^5} \left (2 e^x x+e^3 \left (-6 x+2 x^2\right )\right )+e^{-4+2 e^5} \left (e^{2 x} x+e^{3+x} \left (-6 x+2 x^2\right )+e^6 \left (9 x-6 x^2+x^3\right )\right )+\left (-2 e^{-2+e^5} x+e^{-4+2 e^5} \left (-2 e^x x+e^3 \left (6 x-2 x^2\right )\right )\right ) \log (x)+e^{-4+2 e^5} x \log ^2(x)} \, dx \end {gather*}

Verification is not applicable to the result.

[In]

Int[(E^(1 + E^5)*x + E^(-4 + 2*E^5)*(E^3*(-1 + x) - 2*E^6*x + E^(3 + x)*(2*x - x^2)) - E^(-1 + 2*E^5)*x*Log[x]
)/(x + E^(-2 + E^5)*(2*E^x*x + E^3*(-6*x + 2*x^2)) + E^(-4 + 2*E^5)*(E^(2*x)*x + E^(3 + x)*(-6*x + 2*x^2) + E^
6*(9*x - 6*x^2 + x^3)) + (-2*E^(-2 + E^5)*x + E^(-4 + 2*E^5)*(-2*E^x*x + E^3*(6*x - 2*x^2)))*Log[x] + E^(-4 +
2*E^5)*x*Log[x]^2),x]

[Out]

E^(3 + 2*E^5)*Defer[Int][(E^(E^5 + x) + E^2*(1 - 3*E^(1 + E^5)) + E^(3 + E^5)*x - E^E^5*Log[x])^(-2), x] - E^(
5 + E^5)*(1 - 4*E^(1 + E^5))*Defer[Int][(E^(E^5 + x) + E^2*(1 - 3*E^(1 + E^5)) + E^(3 + E^5)*x - E^E^5*Log[x])
^(-2), x] - E^(3 + 2*E^5)*Defer[Int][1/(x*(E^(E^5 + x) + E^2*(1 - 3*E^(1 + E^5)) + E^(3 + E^5)*x - E^E^5*Log[x
])^2), x] - E^(6 + 2*E^5)*Defer[Int][x/(E^(E^5 + x) + E^2*(1 - 3*E^(1 + E^5)) + E^(3 + E^5)*x - E^E^5*Log[x])^
2, x] + E^(5 + E^5)*(1 - 4*E^(1 + E^5))*Defer[Int][x/(E^(E^5 + x) + E^2*(1 - 3*E^(1 + E^5)) + E^(3 + E^5)*x -
E^E^5*Log[x])^2, x] + E^(6 + 2*E^5)*Defer[Int][x^2/(E^(E^5 + x) + E^2*(1 - 3*E^(1 + E^5)) + E^(3 + E^5)*x - E^
E^5*Log[x])^2, x] + E^(3 + 2*E^5)*Defer[Int][Log[x]/(E^(E^5 + x) + E^2*(1 - 3*E^(1 + E^5)) + E^(3 + E^5)*x - E
^E^5*Log[x])^2, x] - E^(3 + 2*E^5)*Defer[Int][(x*Log[x])/(E^(E^5 + x) + E^2*(1 - 3*E^(1 + E^5)) + E^(3 + E^5)*
x - E^E^5*Log[x])^2, x] + 2*E^(3 + E^5)*Defer[Int][(E^(E^5 + x) + E^2*(1 - 3*E^(1 + E^5)) + E^(3 + E^5)*x - E^
E^5*Log[x])^(-1), x] + E^(3 + E^5)*Defer[Int][x/(-E^(E^5 + x) - E^2*(1 - 3*E^(1 + E^5)) - E^(3 + E^5)*x + E^E^
5*Log[x]), x]

Rubi steps

\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{3+e^5} \left (e^{e^5} (-1+x)+e^2 \left (1-2 e^{1+e^5}\right ) x-e^{e^5+x} (-2+x) x-e^{e^5} x \log (x)\right )}{x \left (e^2+e^{e^5+x}+e^{3+e^5} (-3+x)-e^{e^5} \log (x)\right )^2} \, dx\\ &=e^{3+e^5} \int \frac {e^{e^5} (-1+x)+e^2 \left (1-2 e^{1+e^5}\right ) x-e^{e^5+x} (-2+x) x-e^{e^5} x \log (x)}{x \left (e^2+e^{e^5+x}+e^{3+e^5} (-3+x)-e^{e^5} \log (x)\right )^2} \, dx\\ &=e^{3+e^5} \int \left (\frac {2-x}{e^{e^5+x}+e^2 \left (1-3 e^{1+e^5}\right )+e^{3+e^5} x-e^{e^5} \log (x)}+\frac {(1-x) \left (-e^{e^5}-e^2 \left (1-4 e^{1+e^5}\right ) x-e^{3+e^5} x^2+e^{e^5} x \log (x)\right )}{x \left (e^{e^5+x}+e^2 \left (1-3 e^{1+e^5}\right )+e^{3+e^5} x-e^{e^5} \log (x)\right )^2}\right ) \, dx\\ &=e^{3+e^5} \int \frac {2-x}{e^{e^5+x}+e^2 \left (1-3 e^{1+e^5}\right )+e^{3+e^5} x-e^{e^5} \log (x)} \, dx+e^{3+e^5} \int \frac {(1-x) \left (-e^{e^5}-e^2 \left (1-4 e^{1+e^5}\right ) x-e^{3+e^5} x^2+e^{e^5} x \log (x)\right )}{x \left (e^{e^5+x}+e^2 \left (1-3 e^{1+e^5}\right )+e^{3+e^5} x-e^{e^5} \log (x)\right )^2} \, dx\\ &=e^{3+e^5} \int \left (\frac {2}{e^{e^5+x}+e^2 \left (1-3 e^{1+e^5}\right )+e^{3+e^5} x-e^{e^5} \log (x)}+\frac {x}{-e^{e^5+x}-e^2 \left (1-3 e^{1+e^5}\right )-e^{3+e^5} x+e^{e^5} \log (x)}\right ) \, dx+e^{3+e^5} \int \left (\frac {e^{e^5}+e^2 \left (1-4 e^{1+e^5}\right ) x+e^{3+e^5} x^2-e^{e^5} x \log (x)}{\left (e^{e^5+x}+e^2 \left (1-3 e^{1+e^5}\right )+e^{3+e^5} x-e^{e^5} \log (x)\right )^2}+\frac {-e^{e^5}-e^2 \left (1-4 e^{1+e^5}\right ) x-e^{3+e^5} x^2+e^{e^5} x \log (x)}{x \left (e^{e^5+x}+e^2 \left (1-3 e^{1+e^5}\right )+e^{3+e^5} x-e^{e^5} \log (x)\right )^2}\right ) \, dx\\ &=e^{3+e^5} \int \frac {x}{-e^{e^5+x}-e^2 \left (1-3 e^{1+e^5}\right )-e^{3+e^5} x+e^{e^5} \log (x)} \, dx+e^{3+e^5} \int \frac {e^{e^5}+e^2 \left (1-4 e^{1+e^5}\right ) x+e^{3+e^5} x^2-e^{e^5} x \log (x)}{\left (e^{e^5+x}+e^2 \left (1-3 e^{1+e^5}\right )+e^{3+e^5} x-e^{e^5} \log (x)\right )^2} \, dx+e^{3+e^5} \int \frac {-e^{e^5}-e^2 \left (1-4 e^{1+e^5}\right ) x-e^{3+e^5} x^2+e^{e^5} x \log (x)}{x \left (e^{e^5+x}+e^2 \left (1-3 e^{1+e^5}\right )+e^{3+e^5} x-e^{e^5} \log (x)\right )^2} \, dx+\left (2 e^{3+e^5}\right ) \int \frac {1}{e^{e^5+x}+e^2 \left (1-3 e^{1+e^5}\right )+e^{3+e^5} x-e^{e^5} \log (x)} \, dx\\ &=e^{3+e^5} \int \frac {x}{-e^{e^5+x}-e^2 \left (1-3 e^{1+e^5}\right )-e^{3+e^5} x+e^{e^5} \log (x)} \, dx+e^{3+e^5} \int \left (\frac {e^2 \left (-1+4 e^{1+e^5}\right )}{\left (e^{e^5+x}+e^2 \left (1-3 e^{1+e^5}\right )+e^{3+e^5} x-e^{e^5} \log (x)\right )^2}-\frac {e^{e^5}}{x \left (e^{e^5+x}+e^2 \left (1-3 e^{1+e^5}\right )+e^{3+e^5} x-e^{e^5} \log (x)\right )^2}-\frac {e^{3+e^5} x}{\left (e^{e^5+x}+e^2 \left (1-3 e^{1+e^5}\right )+e^{3+e^5} x-e^{e^5} \log (x)\right )^2}+\frac {e^{e^5} \log (x)}{\left (e^{e^5+x}+e^2 \left (1-3 e^{1+e^5}\right )+e^{3+e^5} x-e^{e^5} \log (x)\right )^2}\right ) \, dx+e^{3+e^5} \int \left (\frac {e^{e^5}}{\left (e^{e^5+x}+e^2 \left (1-3 e^{1+e^5}\right )+e^{3+e^5} x-e^{e^5} \log (x)\right )^2}+\frac {e^2 \left (1-4 e^{1+e^5}\right ) x}{\left (e^{e^5+x}+e^2 \left (1-3 e^{1+e^5}\right )+e^{3+e^5} x-e^{e^5} \log (x)\right )^2}+\frac {e^{3+e^5} x^2}{\left (e^{e^5+x}+e^2 \left (1-3 e^{1+e^5}\right )+e^{3+e^5} x-e^{e^5} \log (x)\right )^2}-\frac {e^{e^5} x \log (x)}{\left (e^{e^5+x}+e^2 \left (1-3 e^{1+e^5}\right )+e^{3+e^5} x-e^{e^5} \log (x)\right )^2}\right ) \, dx+\left (2 e^{3+e^5}\right ) \int \frac {1}{e^{e^5+x}+e^2 \left (1-3 e^{1+e^5}\right )+e^{3+e^5} x-e^{e^5} \log (x)} \, dx\\ &=e^{3+e^5} \int \frac {x}{-e^{e^5+x}-e^2 \left (1-3 e^{1+e^5}\right )-e^{3+e^5} x+e^{e^5} \log (x)} \, dx+\left (2 e^{3+e^5}\right ) \int \frac {1}{e^{e^5+x}+e^2 \left (1-3 e^{1+e^5}\right )+e^{3+e^5} x-e^{e^5} \log (x)} \, dx+e^{3+2 e^5} \int \frac {1}{\left (e^{e^5+x}+e^2 \left (1-3 e^{1+e^5}\right )+e^{3+e^5} x-e^{e^5} \log (x)\right )^2} \, dx-e^{3+2 e^5} \int \frac {1}{x \left (e^{e^5+x}+e^2 \left (1-3 e^{1+e^5}\right )+e^{3+e^5} x-e^{e^5} \log (x)\right )^2} \, dx+e^{3+2 e^5} \int \frac {\log (x)}{\left (e^{e^5+x}+e^2 \left (1-3 e^{1+e^5}\right )+e^{3+e^5} x-e^{e^5} \log (x)\right )^2} \, dx-e^{3+2 e^5} \int \frac {x \log (x)}{\left (e^{e^5+x}+e^2 \left (1-3 e^{1+e^5}\right )+e^{3+e^5} x-e^{e^5} \log (x)\right )^2} \, dx-e^{6+2 e^5} \int \frac {x}{\left (e^{e^5+x}+e^2 \left (1-3 e^{1+e^5}\right )+e^{3+e^5} x-e^{e^5} \log (x)\right )^2} \, dx+e^{6+2 e^5} \int \frac {x^2}{\left (e^{e^5+x}+e^2 \left (1-3 e^{1+e^5}\right )+e^{3+e^5} x-e^{e^5} \log (x)\right )^2} \, dx-\left (e^{5+e^5} \left (1-4 e^{1+e^5}\right )\right ) \int \frac {1}{\left (e^{e^5+x}+e^2 \left (1-3 e^{1+e^5}\right )+e^{3+e^5} x-e^{e^5} \log (x)\right )^2} \, dx+\left (e^{5+e^5} \left (1-4 e^{1+e^5}\right )\right ) \int \frac {x}{\left (e^{e^5+x}+e^2 \left (1-3 e^{1+e^5}\right )+e^{3+e^5} x-e^{e^5} \log (x)\right )^2} \, dx\\ \end {aligned} \end {gather*}

________________________________________________________________________________________

Mathematica [A]  time = 0.12, size = 44, normalized size = 1.26 \begin {gather*} \frac {e^{3+e^5} (-1+x)}{e^2+e^{e^5+x}+e^{3+e^5} (-3+x)-e^{e^5} \log (x)} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(E^(1 + E^5)*x + E^(-4 + 2*E^5)*(E^3*(-1 + x) - 2*E^6*x + E^(3 + x)*(2*x - x^2)) - E^(-1 + 2*E^5)*x*
Log[x])/(x + E^(-2 + E^5)*(2*E^x*x + E^3*(-6*x + 2*x^2)) + E^(-4 + 2*E^5)*(E^(2*x)*x + E^(3 + x)*(-6*x + 2*x^2
) + E^6*(9*x - 6*x^2 + x^3)) + (-2*E^(-2 + E^5)*x + E^(-4 + 2*E^5)*(-2*E^x*x + E^3*(6*x - 2*x^2)))*Log[x] + E^
(-4 + 2*E^5)*x*Log[x]^2),x]

[Out]

(E^(3 + E^5)*(-1 + x))/(E^2 + E^(E^5 + x) + E^(3 + E^5)*(-3 + x) - E^E^5*Log[x])

________________________________________________________________________________________

fricas [A]  time = 0.67, size = 40, normalized size = 1.14 \begin {gather*} \frac {{\left (x - 1\right )} e^{\left (e^{5} + 7\right )}}{{\left ({\left (x - 3\right )} e^{6} + e^{\left (x + 3\right )}\right )} e^{\left (e^{5} + 1\right )} - e^{\left (e^{5} + 4\right )} \log \relax (x) + e^{6}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-x*exp(3)*exp(exp(5)-2)^2*log(x)+((-x^2+2*x)*exp(3)*exp(x)-2*x*exp(3)^2+(x-1)*exp(3))*exp(exp(5)-2)
^2+x*exp(3)*exp(exp(5)-2))/(x*exp(exp(5)-2)^2*log(x)^2+((-2*exp(x)*x+(-2*x^2+6*x)*exp(3))*exp(exp(5)-2)^2-2*x*
exp(exp(5)-2))*log(x)+(x*exp(x)^2+(2*x^2-6*x)*exp(3)*exp(x)+(x^3-6*x^2+9*x)*exp(3)^2)*exp(exp(5)-2)^2+(2*exp(x
)*x+(2*x^2-6*x)*exp(3))*exp(exp(5)-2)+x),x, algorithm="fricas")

[Out]

(x - 1)*e^(e^5 + 7)/(((x - 3)*e^6 + e^(x + 3))*e^(e^5 + 1) - e^(e^5 + 4)*log(x) + e^6)

________________________________________________________________________________________

giac [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-x*exp(3)*exp(exp(5)-2)^2*log(x)+((-x^2+2*x)*exp(3)*exp(x)-2*x*exp(3)^2+(x-1)*exp(3))*exp(exp(5)-2)
^2+x*exp(3)*exp(exp(5)-2))/(x*exp(exp(5)-2)^2*log(x)^2+((-2*exp(x)*x+(-2*x^2+6*x)*exp(3))*exp(exp(5)-2)^2-2*x*
exp(exp(5)-2))*log(x)+(x*exp(x)^2+(2*x^2-6*x)*exp(3)*exp(x)+(x^3-6*x^2+9*x)*exp(3)^2)*exp(exp(5)-2)^2+(2*exp(x
)*x+(2*x^2-6*x)*exp(3))*exp(exp(5)-2)+x),x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

maple [A]  time = 0.06, size = 38, normalized size = 1.09




method result size



risch \(\frac {\left (x -1\right ) {\mathrm e}^{{\mathrm e}^{5}}}{{\mathrm e}^{{\mathrm e}^{5}-3+x}-\ln \relax (x ) {\mathrm e}^{{\mathrm e}^{5}-3}+x \,{\mathrm e}^{{\mathrm e}^{5}}+{\mathrm e}^{-1}-3 \,{\mathrm e}^{{\mathrm e}^{5}}}\) \(38\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-x*exp(3)*exp(exp(5)-2)^2*ln(x)+((-x^2+2*x)*exp(3)*exp(x)-2*x*exp(3)^2+(x-1)*exp(3))*exp(exp(5)-2)^2+x*ex
p(3)*exp(exp(5)-2))/(x*exp(exp(5)-2)^2*ln(x)^2+((-2*exp(x)*x+(-2*x^2+6*x)*exp(3))*exp(exp(5)-2)^2-2*x*exp(exp(
5)-2))*ln(x)+(x*exp(x)^2+(2*x^2-6*x)*exp(3)*exp(x)+(x^3-6*x^2+9*x)*exp(3)^2)*exp(exp(5)-2)^2+(2*exp(x)*x+(2*x^
2-6*x)*exp(3))*exp(exp(5)-2)+x),x,method=_RETURNVERBOSE)

[Out]

(x-1)*exp(exp(5))/(exp(exp(5)-3+x)-ln(x)*exp(exp(5)-3)+x*exp(exp(5))+exp(-1)-3*exp(exp(5)))

________________________________________________________________________________________

maxima [A]  time = 1.42, size = 47, normalized size = 1.34 \begin {gather*} \frac {x e^{\left (e^{5} + 3\right )} - e^{\left (e^{5} + 3\right )}}{x e^{\left (e^{5} + 3\right )} - e^{\left (e^{5}\right )} \log \relax (x) + e^{2} + e^{\left (x + e^{5}\right )} - 3 \, e^{\left (e^{5} + 3\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-x*exp(3)*exp(exp(5)-2)^2*log(x)+((-x^2+2*x)*exp(3)*exp(x)-2*x*exp(3)^2+(x-1)*exp(3))*exp(exp(5)-2)
^2+x*exp(3)*exp(exp(5)-2))/(x*exp(exp(5)-2)^2*log(x)^2+((-2*exp(x)*x+(-2*x^2+6*x)*exp(3))*exp(exp(5)-2)^2-2*x*
exp(exp(5)-2))*log(x)+(x*exp(x)^2+(2*x^2-6*x)*exp(3)*exp(x)+(x^3-6*x^2+9*x)*exp(3)^2)*exp(exp(5)-2)^2+(2*exp(x
)*x+(2*x^2-6*x)*exp(3))*exp(exp(5)-2)+x),x, algorithm="maxima")

[Out]

(x*e^(e^5 + 3) - e^(e^5 + 3))/(x*e^(e^5 + 3) - e^(e^5)*log(x) + e^2 + e^(x + e^5) - 3*e^(e^5 + 3))

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int \frac {{\mathrm {e}}^{2\,{\mathrm {e}}^5-4}\,\left ({\mathrm {e}}^3\,\left (x-1\right )-2\,x\,{\mathrm {e}}^6+{\mathrm {e}}^3\,{\mathrm {e}}^x\,\left (2\,x-x^2\right )\right )+x\,{\mathrm {e}}^{{\mathrm {e}}^5-2}\,{\mathrm {e}}^3-x\,{\mathrm {e}}^3\,{\mathrm {e}}^{2\,{\mathrm {e}}^5-4}\,\ln \relax (x)}{x\,{\mathrm {e}}^{2\,{\mathrm {e}}^5-4}\,{\ln \relax (x)}^2+\left ({\mathrm {e}}^{2\,{\mathrm {e}}^5-4}\,\left ({\mathrm {e}}^3\,\left (6\,x-2\,x^2\right )-2\,x\,{\mathrm {e}}^x\right )-2\,x\,{\mathrm {e}}^{{\mathrm {e}}^5-2}\right )\,\ln \relax (x)+x+{\mathrm {e}}^{2\,{\mathrm {e}}^5-4}\,\left ({\mathrm {e}}^6\,\left (x^3-6\,x^2+9\,x\right )+x\,{\mathrm {e}}^{2\,x}-{\mathrm {e}}^3\,{\mathrm {e}}^x\,\left (6\,x-2\,x^2\right )\right )-{\mathrm {e}}^{{\mathrm {e}}^5-2}\,\left ({\mathrm {e}}^3\,\left (6\,x-2\,x^2\right )-2\,x\,{\mathrm {e}}^x\right )} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((exp(2*exp(5) - 4)*(exp(3)*(x - 1) - 2*x*exp(6) + exp(3)*exp(x)*(2*x - x^2)) + x*exp(exp(5) - 2)*exp(3) -
x*exp(3)*exp(2*exp(5) - 4)*log(x))/(x + exp(2*exp(5) - 4)*(exp(6)*(9*x - 6*x^2 + x^3) + x*exp(2*x) - exp(3)*ex
p(x)*(6*x - 2*x^2)) - exp(exp(5) - 2)*(exp(3)*(6*x - 2*x^2) - 2*x*exp(x)) - log(x)*(2*x*exp(exp(5) - 2) - exp(
2*exp(5) - 4)*(exp(3)*(6*x - 2*x^2) - 2*x*exp(x))) + x*exp(2*exp(5) - 4)*log(x)^2),x)

[Out]

int((exp(2*exp(5) - 4)*(exp(3)*(x - 1) - 2*x*exp(6) + exp(3)*exp(x)*(2*x - x^2)) + x*exp(exp(5) - 2)*exp(3) -
x*exp(3)*exp(2*exp(5) - 4)*log(x))/(x + exp(2*exp(5) - 4)*(exp(6)*(9*x - 6*x^2 + x^3) + x*exp(2*x) - exp(3)*ex
p(x)*(6*x - 2*x^2)) - exp(exp(5) - 2)*(exp(3)*(6*x - 2*x^2) - 2*x*exp(x)) - log(x)*(2*x*exp(exp(5) - 2) - exp(
2*exp(5) - 4)*(exp(3)*(6*x - 2*x^2) - 2*x*exp(x))) + x*exp(2*exp(5) - 4)*log(x)^2), x)

________________________________________________________________________________________

sympy [B]  time = 0.44, size = 58, normalized size = 1.66 \begin {gather*} \frac {x e^{3} e^{e^{5}} - e^{3} e^{e^{5}}}{x e^{3} e^{e^{5}} + e^{x} e^{e^{5}} - e^{e^{5}} \log {\relax (x )} - 3 e^{3} e^{e^{5}} + e^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-x*exp(3)*exp(exp(5)-2)**2*ln(x)+((-x**2+2*x)*exp(3)*exp(x)-2*x*exp(3)**2+(x-1)*exp(3))*exp(exp(5)-
2)**2+x*exp(3)*exp(exp(5)-2))/(x*exp(exp(5)-2)**2*ln(x)**2+((-2*exp(x)*x+(-2*x**2+6*x)*exp(3))*exp(exp(5)-2)**
2-2*x*exp(exp(5)-2))*ln(x)+(x*exp(x)**2+(2*x**2-6*x)*exp(3)*exp(x)+(x**3-6*x**2+9*x)*exp(3)**2)*exp(exp(5)-2)*
*2+(2*exp(x)*x+(2*x**2-6*x)*exp(3))*exp(exp(5)-2)+x),x)

[Out]

(x*exp(3)*exp(exp(5)) - exp(3)*exp(exp(5)))/(x*exp(3)*exp(exp(5)) + exp(x)*exp(exp(5)) - exp(exp(5))*log(x) -
3*exp(3)*exp(exp(5)) + exp(2))

________________________________________________________________________________________