Optimal. Leaf size=36 \[ 3 x+\frac {(4+4 \log (2))^2}{9 \left (e^{\frac {-1+2 x}{x}}-x\right )^2 x^2} \]
________________________________________________________________________________________
Rubi [F] time = 2.72, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {64 x^2+27 e^{\frac {3 (-1+2 x)}{x}} x^4-81 e^{\frac {2 (-1+2 x)}{x}} x^5-27 x^7+128 x^2 \log (2)+64 x^2 \log ^2(2)+e^{\frac {-1+2 x}{x}} \left (-32-32 x+81 x^6+(-64-64 x) \log (2)+(-32-32 x) \log ^2(2)\right )}{9 e^{\frac {3 (-1+2 x)}{x}} x^4-27 e^{\frac {2 (-1+2 x)}{x}} x^5+27 e^{\frac {-1+2 x}{x}} x^6-9 x^7} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {27 e^{\frac {3 (-1+2 x)}{x}} x^4-81 e^{\frac {2 (-1+2 x)}{x}} x^5-27 x^7+64 x^2 \log ^2(2)+x^2 (64+128 \log (2))+e^{\frac {-1+2 x}{x}} \left (-32-32 x+81 x^6+(-64-64 x) \log (2)+(-32-32 x) \log ^2(2)\right )}{9 e^{\frac {3 (-1+2 x)}{x}} x^4-27 e^{\frac {2 (-1+2 x)}{x}} x^5+27 e^{\frac {-1+2 x}{x}} x^6-9 x^7} \, dx\\ &=\int \frac {27 e^{\frac {3 (-1+2 x)}{x}} x^4-81 e^{\frac {2 (-1+2 x)}{x}} x^5-27 x^7+x^2 \left (64+128 \log (2)+64 \log ^2(2)\right )+e^{\frac {-1+2 x}{x}} \left (-32-32 x+81 x^6+(-64-64 x) \log (2)+(-32-32 x) \log ^2(2)\right )}{9 e^{\frac {3 (-1+2 x)}{x}} x^4-27 e^{\frac {2 (-1+2 x)}{x}} x^5+27 e^{\frac {-1+2 x}{x}} x^6-9 x^7} \, dx\\ &=\int \frac {27 e^6 x^4-81 e^{4+\frac {1}{x}} x^5-e^{3/x} x^2 \left (27 x^5-64 (1+\log (2))^2\right )-e^{2+\frac {2}{x}} \left (-81 x^6+32 (1+\log (2))^2+32 x (1+\log (2))^2\right )}{9 x^4 \left (e^2-e^{\frac {1}{x}} x\right )^3} \, dx\\ &=\frac {1}{9} \int \frac {27 e^6 x^4-81 e^{4+\frac {1}{x}} x^5-e^{3/x} x^2 \left (27 x^5-64 (1+\log (2))^2\right )-e^{2+\frac {2}{x}} \left (-81 x^6+32 (1+\log (2))^2+32 x (1+\log (2))^2\right )}{x^4 \left (e^2-e^{\frac {1}{x}} x\right )^3} \, dx\\ &=\frac {1}{9} \int \left (\frac {32 e^6 (-1+x) (1+\log (2))^2}{x^6 \left (e^2-e^{\frac {1}{x}} x\right )^3}-\frac {64 e^4 (-1+2 x) (1+\log (2))^2}{x^6 \left (e^2-e^{\frac {1}{x}} x\right )^2}+\frac {32 e^2 (-1+5 x) (1+\log (2))^2}{x^6 \left (e^2-e^{\frac {1}{x}} x\right )}+\frac {-64+27 x^5-128 \log (2)-64 \log ^2(2)}{x^5}\right ) \, dx\\ &=\frac {1}{9} \int \frac {-64+27 x^5-128 \log (2)-64 \log ^2(2)}{x^5} \, dx+\frac {1}{9} \left (32 e^2 (1+\log (2))^2\right ) \int \frac {-1+5 x}{x^6 \left (e^2-e^{\frac {1}{x}} x\right )} \, dx-\frac {1}{9} \left (64 e^4 (1+\log (2))^2\right ) \int \frac {-1+2 x}{x^6 \left (e^2-e^{\frac {1}{x}} x\right )^2} \, dx+\frac {1}{9} \left (32 e^6 (1+\log (2))^2\right ) \int \frac {-1+x}{x^6 \left (e^2-e^{\frac {1}{x}} x\right )^3} \, dx\\ &=\frac {1}{9} \int \left (27-\frac {64 (1+\log (2))^2}{x^5}\right ) \, dx+\frac {1}{9} \left (32 e^2 (1+\log (2))^2\right ) \int \left (\frac {1}{x^6 \left (-e^2+e^{\frac {1}{x}} x\right )}-\frac {5}{x^5 \left (-e^2+e^{\frac {1}{x}} x\right )}\right ) \, dx-\frac {1}{9} \left (64 e^4 (1+\log (2))^2\right ) \int \left (-\frac {1}{x^6 \left (-e^2+e^{\frac {1}{x}} x\right )^2}+\frac {2}{x^5 \left (-e^2+e^{\frac {1}{x}} x\right )^2}\right ) \, dx+\frac {1}{9} \left (32 e^6 (1+\log (2))^2\right ) \int \left (\frac {1}{x^6 \left (-e^2+e^{\frac {1}{x}} x\right )^3}-\frac {1}{x^5 \left (-e^2+e^{\frac {1}{x}} x\right )^3}\right ) \, dx\\ &=3 x+\frac {16 (1+\log (2))^2}{9 x^4}+\frac {1}{9} \left (32 e^2 (1+\log (2))^2\right ) \int \frac {1}{x^6 \left (-e^2+e^{\frac {1}{x}} x\right )} \, dx-\frac {1}{9} \left (160 e^2 (1+\log (2))^2\right ) \int \frac {1}{x^5 \left (-e^2+e^{\frac {1}{x}} x\right )} \, dx+\frac {1}{9} \left (64 e^4 (1+\log (2))^2\right ) \int \frac {1}{x^6 \left (-e^2+e^{\frac {1}{x}} x\right )^2} \, dx-\frac {1}{9} \left (128 e^4 (1+\log (2))^2\right ) \int \frac {1}{x^5 \left (-e^2+e^{\frac {1}{x}} x\right )^2} \, dx+\frac {1}{9} \left (32 e^6 (1+\log (2))^2\right ) \int \frac {1}{x^6 \left (-e^2+e^{\frac {1}{x}} x\right )^3} \, dx-\frac {1}{9} \left (32 e^6 (1+\log (2))^2\right ) \int \frac {1}{x^5 \left (-e^2+e^{\frac {1}{x}} x\right )^3} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.12, size = 64, normalized size = 1.78 \begin {gather*} \frac {27 e^4 x^3-54 e^{2+\frac {1}{x}} x^4+e^{2/x} \left (27 x^5+16 (1+\log (2))^2\right )}{9 x^2 \left (e^2-e^{\frac {1}{x}} x\right )^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 1.13, size = 86, normalized size = 2.39 \begin {gather*} \frac {27 \, x^{5} - 54 \, x^{4} e^{\left (\frac {2 \, x - 1}{x}\right )} + 27 \, x^{3} e^{\left (\frac {2 \, {\left (2 \, x - 1\right )}}{x}\right )} + 16 \, \log \relax (2)^{2} + 32 \, \log \relax (2) + 16}{9 \, {\left (x^{4} - 2 \, x^{3} e^{\left (\frac {2 \, x - 1}{x}\right )} + x^{2} e^{\left (\frac {2 \, {\left (2 \, x - 1\right )}}{x}\right )}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.28, size = 82, normalized size = 2.28 \begin {gather*} -\frac {\frac {54 \, e^{\left (-\frac {1}{x} + 2\right )}}{x} - \frac {27 \, e^{\left (-\frac {2}{x} + 4\right )}}{x^{2}} - \frac {16 \, \log \relax (2)^{2}}{x^{5}} - \frac {32 \, \log \relax (2)}{x^{5}} - \frac {16}{x^{5}} - 27}{9 \, {\left (\frac {1}{x} - \frac {2 \, e^{\left (-\frac {1}{x} + 2\right )}}{x^{2}} + \frac {e^{\left (-\frac {2}{x} + 4\right )}}{x^{3}}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.31, size = 36, normalized size = 1.00
method | result | size |
risch | \(3 x +\frac {\frac {16 \ln \relax (2)^{2}}{9}+\frac {32 \ln \relax (2)}{9}+\frac {16}{9}}{x^{2} \left (x -{\mathrm e}^{\frac {2 x -1}{x}}\right )^{2}}\) | \(36\) |
norman | \(\frac {\left (\frac {16 \ln \relax (2)^{2}}{9}+\frac {32 \ln \relax (2)}{9}+\frac {16}{9}\right ) x +3 x^{6}+3 x^{4} {\mathrm e}^{\frac {4 x -2}{x}}-6 x^{5} {\mathrm e}^{\frac {2 x -1}{x}}}{x^{3} \left (x -{\mathrm e}^{\frac {2 x -1}{x}}\right )^{2}}\) | \(73\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.49, size = 76, normalized size = 2.11 \begin {gather*} -\frac {54 \, x^{4} e^{\left (\frac {1}{x} + 2\right )} - 27 \, x^{3} e^{4} - {\left (27 \, x^{5} + 16 \, \log \relax (2)^{2} + 32 \, \log \relax (2) + 16\right )} e^{\frac {2}{x}}}{9 \, {\left (x^{4} e^{\frac {2}{x}} - 2 \, x^{3} e^{\left (\frac {1}{x} + 2\right )} + x^{2} e^{4}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.40, size = 34, normalized size = 0.94 \begin {gather*} 3\,x+\frac {\frac {32\,\ln \relax (2)}{9}+\frac {16\,{\ln \relax (2)}^2}{9}+\frac {16}{9}}{x^2\,{\left (x-{\mathrm {e}}^{2-\frac {1}{x}}\right )}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.21, size = 48, normalized size = 1.33 \begin {gather*} 3 x + \frac {16 \log {\relax (2 )}^{2} + 16 + 32 \log {\relax (2 )}}{9 x^{4} - 18 x^{3} e^{\frac {2 x - 1}{x}} + 9 x^{2} e^{\frac {2 \left (2 x - 1\right )}{x}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________