Optimal. Leaf size=23 \[ 2 x \left (5-\frac {3 x}{\log \left (\frac {1}{e^2 x^2 (3+x)^4}\right )}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.56, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-36 x-36 x^2+\left (-36 x-12 x^2\right ) \log \left (\frac {1}{e^2 \left (81 x^2+108 x^3+54 x^4+12 x^5+x^6\right )}\right )+(30+10 x) \log ^2\left (\frac {1}{e^2 \left (81 x^2+108 x^3+54 x^4+12 x^5+x^6\right )}\right )}{(3+x) \log ^2\left (\frac {1}{e^2 \left (81 x^2+108 x^3+54 x^4+12 x^5+x^6\right )}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 \left (60+38 x-6 x^2-\left (60+38 x+6 x^2\right ) \log \left (\frac {1}{x^2 (3+x)^4}\right )+5 (3+x) \log ^2\left (\frac {1}{x^2 (3+x)^4}\right )\right )}{(3+x) \left (2-\log \left (\frac {1}{x^2 (3+x)^4}\right )\right )^2} \, dx\\ &=2 \int \frac {60+38 x-6 x^2-\left (60+38 x+6 x^2\right ) \log \left (\frac {1}{x^2 (3+x)^4}\right )+5 (3+x) \log ^2\left (\frac {1}{x^2 (3+x)^4}\right )}{(3+x) \left (2-\log \left (\frac {1}{x^2 (3+x)^4}\right )\right )^2} \, dx\\ &=2 \int \left (5-\frac {18 x (1+x)}{(3+x) \left (-2+\log \left (\frac {1}{x^2 (3+x)^4}\right )\right )^2}-\frac {6 x}{-2+\log \left (\frac {1}{x^2 (3+x)^4}\right )}\right ) \, dx\\ &=10 x-12 \int \frac {x}{-2+\log \left (\frac {1}{x^2 (3+x)^4}\right )} \, dx-36 \int \frac {x (1+x)}{(3+x) \left (-2+\log \left (\frac {1}{x^2 (3+x)^4}\right )\right )^2} \, dx\\ &=10 x-12 \int \frac {x}{-2+\log \left (\frac {1}{x^2 (3+x)^4}\right )} \, dx-36 \int \left (-\frac {2}{\left (-2+\log \left (\frac {1}{x^2 (3+x)^4}\right )\right )^2}+\frac {x}{\left (-2+\log \left (\frac {1}{x^2 (3+x)^4}\right )\right )^2}+\frac {6}{(3+x) \left (-2+\log \left (\frac {1}{x^2 (3+x)^4}\right )\right )^2}\right ) \, dx\\ &=10 x-12 \int \frac {x}{-2+\log \left (\frac {1}{x^2 (3+x)^4}\right )} \, dx-36 \int \frac {x}{\left (-2+\log \left (\frac {1}{x^2 (3+x)^4}\right )\right )^2} \, dx+72 \int \frac {1}{\left (-2+\log \left (\frac {1}{x^2 (3+x)^4}\right )\right )^2} \, dx-216 \int \frac {1}{(3+x) \left (-2+\log \left (\frac {1}{x^2 (3+x)^4}\right )\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.18, size = 25, normalized size = 1.09 \begin {gather*} -2 \left (-5 x+\frac {3 x^2}{-2+\log \left (\frac {1}{x^2 (3+x)^4}\right )}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.90, size = 73, normalized size = 3.17 \begin {gather*} -\frac {2 \, {\left (3 \, x^{2} - 5 \, x \log \left (\frac {e^{\left (-2\right )}}{x^{6} + 12 \, x^{5} + 54 \, x^{4} + 108 \, x^{3} + 81 \, x^{2}}\right )\right )}}{\log \left (\frac {e^{\left (-2\right )}}{x^{6} + 12 \, x^{5} + 54 \, x^{4} + 108 \, x^{3} + 81 \, x^{2}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.43, size = 38, normalized size = 1.65 \begin {gather*} 10 \, x + \frac {6 \, x^{2}}{\log \left (x^{6} + 12 \, x^{5} + 54 \, x^{4} + 108 \, x^{3} + 81 \, x^{2}\right ) + 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.09, size = 42, normalized size = 1.83
method | result | size |
risch | \(10 x -\frac {6 x^{2}}{\ln \left (\frac {{\mathrm e}^{-2}}{x^{6}+12 x^{5}+54 x^{4}+108 x^{3}+81 x^{2}}\right )}\) | \(42\) |
norman | \(\frac {-6 x^{2}+10 x \ln \left (\frac {{\mathrm e}^{-2}}{x^{6}+12 x^{5}+54 x^{4}+108 x^{3}+81 x^{2}}\right )}{\ln \left (\frac {{\mathrm e}^{-2}}{x^{6}+12 x^{5}+54 x^{4}+108 x^{3}+81 x^{2}}\right )}\) | \(77\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.39, size = 34, normalized size = 1.48 \begin {gather*} \frac {3 \, x^{2} + 20 \, x \log \left (x + 3\right ) + 10 \, x \log \relax (x) + 10 \, x}{2 \, \log \left (x + 3\right ) + \log \relax (x) + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.42, size = 99, normalized size = 4.30 \begin {gather*} 14\,x+\frac {4}{x+1}+2\,x^2-\frac {6\,x^2+\frac {2\,x^2\,\ln \left (\frac {{\mathrm {e}}^{-2}}{x^6+12\,x^5+54\,x^4+108\,x^3+81\,x^2}\right )\,\left (x+3\right )}{x+1}}{\ln \left (\frac {{\mathrm {e}}^{-2}}{x^6+12\,x^5+54\,x^4+108\,x^3+81\,x^2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.20, size = 37, normalized size = 1.61 \begin {gather*} - \frac {6 x^{2}}{\log {\left (\frac {1}{\left (x^{6} + 12 x^{5} + 54 x^{4} + 108 x^{3} + 81 x^{2}\right ) e^{2}} \right )}} + 10 x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________